Skip to main content
Log in

Hexafluorobutanol primary alcohol ethoxylate-based supramolecular solvent formation and their application in direct microextraction of malachite green and crystal violet from lake sediments

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new type of hexafluorobutanol (HFB) primary alcohol ethoxylate (AEO)-based supramolecular solvent (SUPRAS) with density higher than water was prepared for the first time. HFB acted as AEO micelle-forming agent and density-regulating agent for SUPRAS formation. The prepared SUPARS was applied as extraction solvent for vortex-assisted direct microextraction of malachite green (MG) and crystal violet (CV) from lake sediment followed by high-performance liquid chromatographic determination. In the present work, SUPRASs prepared from AEO with different carbon chains as the amphiphiles and various coacervation agents were investigated. SUPARS formed from MOA-3 and HFB provided better extraction efficiency in comparison with other SUPRASs. Parameters influencing the extraction recovery of target analytes including the type and volume of AEO, volume of HFB, and vortex time were investigated and optimized. Under optimized conditions, linearity in the range of 2.0–400 μg g−1 for MG and 2.0–500 μg g−1 for CV with a correlation coefficient higher than 0.9947 was obtained. Limits of detection of 0.5 μg g−1 and relative standard deviations in the range of 0.9–5.8% were obtained. Compared to conventional extraction techniques for analysis of analytes in solid samples, the proposed method reduced sample usage and eliminated a primary extraction process by using a toxic organic solvent. The proposed method is simple, fast, and green and can be used for the analysis of target analytes in solid samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghasemi E, Kaykhaii M. Application of micro-cloud point extraction for spectrophotometric determination of malachite green, crystal violet and rhodamine B in aqueous samples. Spectrochim Acta A. 2016;164:93–7. https://doi.org/10.1016/j.saa.2016.04.001.

    Article  CAS  Google Scholar 

  2. Tran TV, Nguyen DTC, Kumar PS, DinA TM, Qazaq AS, Vo D-VN. Green synthesis of Mn3O4 nanoparticles using Costus woodsonii flowers extract for effective removal of malachite green dye. Environ. Res. 2022; 214(2):113925. https://doi.org/10.1016/j.envres.2022.113925.

  3. Wu J, Yang J, Feng P, Wen L, Huang G, Xu C, Lin B. Highly efficient and ultra-rapid adsorption of malachite green by recyclable crab shell biochang. J Ind Eng Chem. 2022;113:206–14. https://doi.org/10.1016/j.jiec.2022.05.047.

    Article  CAS  Google Scholar 

  4. Li L, Lin Z, Chen X, Zhang H, Lin Y, Lai Z, Huang Z. Molecularly imprinted polymers for extraction of malachite green from fish samples prior to its determination by HPLC. Microchim Acta. 2015;182:1791–6. https://doi.org/10.1007/s00604-015-1513-9.

    Article  CAS  Google Scholar 

  5. Zhao M, Hou Z, Lian Z, Qin D, Ge C. Direct extraction and detection of malachite green from marine sediments by magnetic nano-sized imprinted polymer coupled with spectrophotometric analysis. Mar Pollut Bull. 2020;158:111363. https://doi.org/10.1016/j.marpolbul.2020.111363.

    Article  CAS  PubMed  Google Scholar 

  6. Nebot C, Iglesias A, Barreiro R, Miranda JM, Vázquez B, Franco CM, Cepeda A. A simple and rapid method for the identification and quantification of malachite green and its metabolite in hake by HPLC–MS/MS. Food Control. 2013;31(1):19–25. https://doi.org/10.1016/j.foodcont.2012.09.020.

    Article  CAS  Google Scholar 

  7. Portet-Koltalo F, Tian Y, Berger-Brito I, Benamar A, Boulangé-Lecomte C, Machour N. Determination of multi-class polyaromatic compounds in sediments by a simple modified matrix solid phase dispersive extraction. Talanta. 2021;221:121601. https://doi.org/10.1016/j.talanta.2020.121601.

    Article  CAS  PubMed  Google Scholar 

  8. Yang C, Chao W, Hsieh C, Chang B. Biodegradation of malachite green in milkfish pond sediments. Sustainability. 2019;11(15):4179. https://doi.org/10.3390/su11154179.

    Article  CAS  Google Scholar 

  9. Zhao M, Hou Z, Lian Z, Qin D, Ge C. Direct extraction and detection of malachite green from marine sediments by magnetic nano-sized imprinted polymer coupled with spectrophotometric analysis. Mar Pollut Bull. 2020;158:111363. https://doi.org/10.1016/j.marpolbul.2020.111363.

    Article  CAS  PubMed  Google Scholar 

  10. Szymczak-Żyła M. Analysis of chloropigments in marine sediments using accelerated solvent extraction (ASE). Limnol Oceanogr Methods. 2016;14(7):477–89. https://doi.org/10.1002/lom3.10106.

    Article  Google Scholar 

  11. Lefebvre T, Destandau E, Lesellier E. Sequential extraction of carnosic acid, rosmarinic acid and pigments (carotenoids and chlorophylls) from Rosemary by online supercritical fluid extraction-supercritical fluid chromatography. J Chromatogr A. 2021;1639:461709. https://doi.org/10.1016/j.chroma.2020.461709.

  12. Ngamwonglumlert L, Devahastin S, Chiewchan N. Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev Food Sci Nutr. 2017;57(15):3243–59. https://doi.org/10.1080/10408398.2015.1109498.

    Article  CAS  PubMed  Google Scholar 

  13. Lim JR, Chua LS, Mustaffa AA. Ionic liquids as green solvent and their applications in bioactive compounds extraction from plants. Process Biochem. 2022;122:292–306. https://doi.org/10.1016/j.procbio.2022.10.024.

    Article  CAS  Google Scholar 

  14. Kaoui S, Chebli B, Zaidouni S, Basaid K, Mir Y. Deep eutectic solvents as sustainable extraction media for plants and food samples: a review. Sustain Chem Pharm. 2023;31:100937. https://doi.org/10.1016/j.scp.2022.100937.

    Article  CAS  Google Scholar 

  15. Moradi M, Yamini Y, Feizi N. Development and challenges of supramolecular solvents in liquid-based microextraction methods. TRAC-Trend Anal Chem. 2021;1381:116231. https://doi.org/10.1016/j.trac.2021.116231.

    Article  CAS  Google Scholar 

  16. Dalmaz A, Özak SS. Environmentally-friendly supramolecular solvent microextraction method for rapid identification of Sudan I-IV from food and beverages. Food Chem. 2023;414:135713. https://doi.org/10.1016/j.foodchem.2023.135713.

    Article  CAS  PubMed  Google Scholar 

  17. Algar L, Sicilia MD, Ribio S. Ribbon-shaped supramolecular solvents: synthesis, characterization and potential for making greener the microextraction of water organic pollutants. Talanta. 2023;255:124227. https://doi.org/10.1016/j.talanta.2022.124227.

    Article  CAS  PubMed  Google Scholar 

  18. Arghavani-Beydokhti S, Rajabi M, Asghari A, Hosseini-Bandegharaei A. Highly efficient preconcentration of anti-depressant drugs in biological matrices by conducting supramolecular solvent-based microextraction after dispersive micro solid phase extraction technique. Microchem J. 2023;190:108703. https://doi.org/10.1016/j.microc.2023.108703.

    Article  CAS  Google Scholar 

  19. Musarurwa H, Tafvengwa NT. Supramolecular solvent-based micro-extraction of pesticides in food and environmental samples. Talanta. 2021;223(1):121515. https://doi.org/10.1016/j.talanta.2020.121515.

    Article  CAS  PubMed  Google Scholar 

  20. Karatepe A, Yemen M, Kayapa F, Yılmaz E, Karipcin F, Soylak M. Vortex-assisted restricted access-based supramolecular solvent microextraction of trace Pb(II) ions with 4-(benzimidazolisonitrosoacetyl)biphenyl as a complexing agent before microsampling flame AAS analysis. Talanta. 2022;248:123651. https://doi.org/10.1016/j.talanta.2022.123651.

    Article  CAS  PubMed  Google Scholar 

  21. Chen D, Zhang P, Li Y, Mei Z, Xiao Y. Hexafluoroisopropanol-induced coacervation in aqueous mixed systems of cationic and anionic surfactants for the extraction of sulfonamides in water samples. Anal Bioanal Chem. 2014;406:6051–60. https://doi.org/10.1007/s00216-014-8031-1.

    Article  CAS  PubMed  Google Scholar 

  22. Accioni F, García-Gómez D, Rubio S. Exploring polar hydrophobicity in organized media for extracting oligopeptides: application to the extraction of opiorphin in human saliva. J Chromatogr A. 2021;1635:461777. https://doi.org/10.1016/j.chroma.2020.461777.

    Article  CAS  PubMed  Google Scholar 

  23. Xu J, Niu M, Xiao Y. Hexafluoroisopropanol-induced catanionic-surfactants-based coacervate extraction for analysis of lysozyme. Anal Bioanal Chem. 2017;409:1281–9. https://doi.org/10.1007/s00216-016-0054-3.

    Article  CAS  PubMed  Google Scholar 

  24. Moggi G, Pianca M, Russo S, Costa G. Fluoroalcohols as solvents for aliphatic polyamides. J Fluorine Chem. 1980;16(6):615. https://doi.org/10.1016/S0022-1139(00)84117-2.

    Article  Google Scholar 

  25. Vakh C, Kasper S, Kovalchuk Y, Safonova E, Bulatov A. Alkyl polyglucoside-based supramolecular solvent formation in liquid-phase microextraction. Anal Chim Acta. 2022;1228:340304. https://doi.org/10.1016/j.aca.2022.340304.

    Article  CAS  PubMed  Google Scholar 

  26. Avval MM, Khani R. Eco-friendly and affordable trace quantification of riboflavin in biological and food samples using a supramolecular solvent based liquid–liquid microextraction. J Mole Liq. 2022;362:119725. https://doi.org/10.1016/j.molliq.2022.119725.

    Article  CAS  Google Scholar 

  27. Timofeeva I, Stepanova K, Bulatov A. In-a-syringe surfactant-assisted dispersive liquid-liquid microextraction of polycyclic aromatic hydrocarbons in supramolecular solvent from tea infusion. Talanta. 2021;224:121888. https://doi.org/10.1016/j.talanta.2020.121888.

    Article  CAS  PubMed  Google Scholar 

  28. Zhavoronok MF, Vakh C, Bulatov A. Automated primary amine-based supramolecular solvent microextraction with monoterpenoid as coacervation agent before high-performance liquid chromatography. J Food Compos Anal. 2023;116:105085. https://doi.org/10.1016/j.jfca.2022.105085.

    Article  CAS  Google Scholar 

  29. Bogdanova P, Vakh C, Bulatov A. A surfactant-mediated microextraction of synthetic dyes from solid-phase food samples into the primary amine-based supramolecular solvent. Food Chem. 2022;380:131812. https://doi.org/10.1016/j.foodchem.2021.131812.

    Article  CAS  PubMed  Google Scholar 

  30. Yada S, Matsuoka K, Kanasaki YN, Gotoh K, Yoshimura T. Emulsification, solubilization, and detergency behaviors of homogeneous polyoxypropylene-polyoxyethylene alkyl ether type nonionic surfactants. Colloid Surf A. 2019;564:51–8. https://doi.org/10.1016/j.colsurfa.2018.12.030.

    Article  CAS  Google Scholar 

  31. Li Y, Yang C, Ning J, Yang Y. Cloud point extraction for the determination of bisphenol A, bisphenol AF and tetrabromobisphenol A in river water samples by high-performance liquid chromatography. Anal Methods. 2014;6:3285–90. https://doi.org/10.1039/C3AY42191K.

    Article  CAS  Google Scholar 

  32. Rocha SAN, Costa CR, Celino JJ, Teixeira LSG. Effect of additives on the cloud point of the octylphenol ethoxylate (30EO) nonionic surfactant. J Surfact Deterg. 2013;16:299–303. https://doi.org/10.1007/s11743-012-1421-5.

    Article  CAS  Google Scholar 

  33. Yang W, Xiao H, Li Y, Miao D. Vertical distribution and release characteristics of nitrogen fractions in sediments in the estuaries of Dianchi Lake China. Chem Spec Bioavailab. 2017;29(1):110–9. https://doi.org/10.1080/09542299.2017.1352460.

    Article  CAS  Google Scholar 

  34. Zhou Z, Fu Y, Qin Q, Lu X, Shi X, Zhao C, Xu G. Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples. J Chromatogr A. 2018;1560:19–25. https://doi.org/10.1016/j.chroma.2018.05.016.

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, Lu Y, Li S, Lin X, Xu Z, Dai Z. Application of graphene-based solid-phase extraction for ultra-fast determination of malachite green and its metabolite in fish tissues. Food Chem. 2013;141:1383–9. https://doi.org/10.1016/j.foodchem.2013.04.090.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the financial support by the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities’ Association (grant No. 202101BA070001-051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Ge.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.44 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Pai, N., Chen, X. et al. Hexafluorobutanol primary alcohol ethoxylate-based supramolecular solvent formation and their application in direct microextraction of malachite green and crystal violet from lake sediments. Anal Bioanal Chem 415, 5353–5363 (2023). https://doi.org/10.1007/s00216-023-04810-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04810-8

Keywords

Navigation