Skip to main content
Log in

Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Droplet microfluidics is a rapidly advancing area of microfluidic technology, which offers numerous advantages for cell analysis, such as isolation and accumulation of signals, by confining cells within droplets. However, controlling cell numbers in droplets is challenging due to the uncertainty of random encapsulation which result in many empty droplets. Therefore, more precise control techniques are needed to achieve efficient encapsulation of cells within droplets. Here, an innovative microfluidic droplet manipulation platform had been developed, which employed positive pressure as a stable and controllable driving force for manipulating fluid within chips. The air cylinder, electro-pneumatics proportional valve, and the microfluidic chip were connected through a capillary, which enabled the formation of a fluid wall by creating a difference in hydrodynamic resistance between two fluid streams at the channel junction. Lowering the pressure of the driving oil phase eliminates hydrodynamic resistance and breaks the fluid wall. Regulating the duration of the fluid wall breakage controls the volume of the introduced fluid. Several important droplet microfluidic manipulations were demonstrated on this microfluidic platform, such as sorting of cells/droplets, sorting of droplets co-encapsulated cells and hydrogels, and active generation of droplets encapsulated with cells in a responsive manner. The simple, on-demand microfluidic platform was featured with high stability, good controllability, and compatibility with other droplet microfluidic technologies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal Chem. 2021;93(1):311–31. https://doi.org/10.1021/acs.analchem.0c04366.

    Article  CAS  PubMed  Google Scholar 

  2. Chou WL, Lee PY, Yang CL, Huang WY, Lin YS. Recent advances in applications of droplet microfluidics. Micromachines. 2015;6(9):1249–71. https://doi.org/10.3390/mi6091249.

    Article  Google Scholar 

  3. Kaushik AM, Hsieh K, Wang TH. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers. Wiley Interdiscip Rev-Nanomed Nanobiotechnol. 2018;10(6):e1522. https://doi.org/10.1002/wnan.1522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun JH, Warden AR, Ding XT. Recent advances in microfluidics for drug screening. Biomicrofluidics. 2019;13(6):061503. https://doi.org/10.1063/1.5121200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dittrich PS, Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov. 2006;5(3):210–8. https://doi.org/10.1038/nrd1985.

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Fan XM, Li Z, Shi LN, Liu JK, Luo HZ, Wang LJ, Du XX, Chen WZ, Guo JC, Li CZ, Liu S. Application of microfluidics in drug development from traditional medicine. Biosensors-Basel. 2022;12(10):810. https://doi.org/10.3390/bios12100870.

    Article  CAS  Google Scholar 

  7. Guo Q-R, Zhang L-L, Liu J-F, Li Z, Li J-J, Zhou W-M, Wang H, Li J-Q, Liu D-Y, Yu X-Y, Zhang J-Y. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics. 2021;5(1):73–89. https://doi.org/10.7150/ntno.49614.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Garcia-Cordero JL, Maerkl SJ. Microfluidic systems for cancer diagnostics. Curr Opin Biotechnol. 2020;65:37–44. https://doi.org/10.1016/j.copbio.2019.11.022.

    Article  CAS  PubMed  Google Scholar 

  9. Sun C, Liu L, Perez L, Li X, Liu Y, Xu P, Boritz EA, Mullins JI, Abate AR. Droplet-microfluidics-assisted sequencing of HIV proviruses and their integration sites in cells from people on antiretroviral therapy. Nat Biomed Eng. 2022;6(8):1004–12. https://doi.org/10.1038/s41551-022-00864-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shahrivar K, Del Giudice F. Controlled viscoelastic particle encapsulation in microfluidic devices. Soft Matter. 2021;17(35):8068–77. https://doi.org/10.1039/d1sm00941a.

    Article  CAS  PubMed  Google Scholar 

  11. Shahrivar K, Del Giudice F. Beating Poisson stochastic particle encapsulation in flow-focusing microfluidic devices using viscoelastic liquids. Soft Matter. 2022;18(32):5928–33. https://doi.org/10.1039/d2sm00935h.

    Article  CAS  PubMed  Google Scholar 

  12. Jeyasountharan A, Del Giudice F. Viscoelastic particle encapsulation using a hyaluronic acid solution in a T-Junction microfluidic device. Micromachines. 2023;14(3):563. https://doi.org/10.3390/mi14030563.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harrington J, Esteban LB, Butement J, Vallejo AF, Lane SIR, Sheth B, Jongen MSA, Parker R, Stumpf PS, Smith RCG, MacArthur B, Rose-Zerilli MJJ, Polak ME, Underwood T, West J. Dual dean entrainment with volume ratio modulation for efficient droplet co-encapsulation: extreme single-cell indexing. Lab Chip. 2021;21(17):3378–86. https://doi.org/10.1039/d1lc00292a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yue XY, Fang XX, Sun T, Yi JW, Kuang XJ, Guo QS, Wang Y, Gu HC, Xu H. Breaking through the Poisson distribution: a compact high-efficiency droplet microfluidic system for single-bead encapsulation and digital immunoassay detection. Biosens Bioelectron. 2022;211:114384. https://doi.org/10.1016/j.bios.2022.114384.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou JD, Wei A, Bertsch A, Renaud P. High precision, high throughput generation of droplets containing single cells. Lab Chip. 2022;22(24):4841–8. https://doi.org/10.1039/d2lc00841f.

    Article  CAS  PubMed  Google Scholar 

  16. Xi HD, Zheng H, Guo W, Ganan-Calvo AM, Ai Y, Tsao CW, Zhou J, Li W, Huang Y, Nguyen NT, Tan SH. Active droplet sorting in microfluidics: a review. Lab Chip. 2017;17(5):751–71. https://doi.org/10.1039/c6lc01435f.

    Article  CAS  PubMed  Google Scholar 

  17. Wu L, Chen P, Dong Y, Feng X, Liu BF. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed Microdevices. 2013;15(3):553–60. https://doi.org/10.1007/s10544-013-9754-z.

    Article  CAS  PubMed  Google Scholar 

  18. Nieuwstadt HA, Seda R, Li DS, Fowlkes JB, Bull JL. Microfluidic particle sorting utilizing inertial lift force. Biomed Microdevices. 2011;13(1):97–105. https://doi.org/10.1007/s10544-010-9474-6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Horvath DG, Braza S, Moore T, Pan CW, Zhu L, Pak OS, Abbyad P. Sorting by interfacial tension (SIFT): label-free enzyme sorting using droplet microfluidics. Anal Chim Acta. 2019;1089:108–14. https://doi.org/10.1016/j.aca.2019.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tottori N, Nisisako T. High-throughput production of satellite-free droplets through a parallelized microfluidic deterministic lateral displacement device. Sens Actuators B Chem. 2018;260:918–26. https://doi.org/10.1016/j.snb.2018.01.112.

    Article  CAS  Google Scholar 

  21. Pan CW, Horvath DG, Braza S, Moore T, Lynch A, Feit C, Abbyad P. Sorting by interfacial tension (SIFT): label-free selection of live cells based on single-cell metabolism. Lab Chip. 2019;19(8):1344–51. https://doi.org/10.1039/c8lc01328d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip. 2009;9(13):1850–8. https://doi.org/10.1039/b902504a.

    Article  CAS  PubMed  Google Scholar 

  23. Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc. 2013;8(5):870–91. https://doi.org/10.1038/nprot.2013.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilder LM, Thompson JR, Crooks RM. Electrochemical pH regulation in droplet microfluidics. Lab Chip. 2022;22(3):632–40. https://doi.org/10.1039/d1lc00952d.

    Article  CAS  PubMed  Google Scholar 

  25. Teste B, Jamond N, Ferraro D, Viovy JL, Malaquin L. Selective handling of droplets in a microfluidic device using magnetic rails. Microfluid Nanofluid. 2015;19(1):141–53. https://doi.org/10.1007/s10404-015-1556-6.

    Article  CAS  Google Scholar 

  26. Serra M, Mai TD, Serra AL, Nguyen MC, Eisele A, Perie L, Viovy JL, Ferraro D, Descroix S. Integrated droplet microfluidic device for magnetic particles handling: application to DNA size selection in NGS libraries preparation. Sens Actuators B Chem. 2020;305:127346. https://doi.org/10.1016/j.snb.2019.127346.

    Article  CAS  Google Scholar 

  27. Kim J, Won J, Song S. Dual-mode on-demand droplet routing in multiple microchannels using a magnetic fluid as carrier phase. Biomicrofluidics. 2014;8(5):054105. https://doi.org/10.1063/1.4894748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Franke T, Abate AR, Weitz DA, Wixforth A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip. 2009;9(18):2625–7. https://doi.org/10.1039/b906819h.

    Article  CAS  PubMed  Google Scholar 

  29. Sesen M, Alan T, Neild A. Microfluidic plug steering using surface acoustic waves. Lab Chip. 2015;15(14):3030–8. https://doi.org/10.1039/c5lc00468c.

    Article  CAS  PubMed  Google Scholar 

  30. Park J, Destgeer G, Afzal M, Sung HJ. Acoustofluidic generation of droplets with tunable chemical concentrations. Lab Chip. 2020;20(21):3922–9. https://doi.org/10.1039/d0lc00803f.

    Article  CAS  PubMed  Google Scholar 

  31. Baret JC. Surfactants in droplet-based microfluidics. Lab Chip. 2012;12(3):422–33. https://doi.org/10.1039/c1lc20582j.

    Article  CAS  PubMed  Google Scholar 

  32. Zhong RY, Yang SJ, Ugolini GS, Naquin T, Zhang JX, Yang KC, Xia JP, Konry T, Huang TJ. Acoustofluidic droplet sorter based on single phase focused transducers. Small. 2021;17(46):e2103848. https://doi.org/10.1002/smll.202103848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou Y, Yu ZB, Wu M, Lan YW, Jia CP, Zhao JL. Single-cell sorting using integrated pneumatic valve droplet microfluidic chip. Talanta. 2023;253:124044. https://doi.org/10.1016/j.talanta.2022.124044.

    Article  CAS  Google Scholar 

  34. Jin SH, Lee B, Kim JS, Lee CS. Improvement strategy of a microfluidic sorter using a pneumatic bilayer valve. Chem Eng Sci. 2021;245:116834. https://doi.org/10.1016/j.ces.2021.116834.

    Article  CAS  Google Scholar 

  35. Sundararajan N, Kim DS, Berlin AA. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Lab Chip. 2005;5(3):350–4. https://doi.org/10.1039/b500792p.

    Article  CAS  PubMed  Google Scholar 

  36. Abate AR, Agresti JJ, Weitz DA. Microfluidic sorting with high-speed single-layer membrane valves. Appl Phys Lett. 2010;96(20):203509. https://doi.org/10.1063/1.3431281.

    Article  CAS  Google Scholar 

  37. Zhang Q, Zhang P, Su Y, Mou C, Zhou T, Yang M, Xu J, Ma B. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab Chip. 2014;14(24):4599–603. https://doi.org/10.1039/c4lc00833b.

    Article  CAS  PubMed  Google Scholar 

  38. Hu R, Liu P, Chen P, Wu L, Wang Y, Feng XJ, Liu BF. Encapsulation of single cells into monodisperse droplets by fluorescence-activated droplet formation on a microfluidic chip. Talanta. 2016;153:253–9. https://doi.org/10.1016/j.talanta.2016.03.013.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang R, Gao C, Tian L, Wang R, Hong J, Gao M, Gui L. Dynamic pneumatic rails enabled microdroplet manipulation. Lab Chip. 2021;21(1):105–12. https://doi.org/10.1039/d0lc00805b.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Q, Wang T, Zhou Q, Zhang P, Gong Y, Gou H, Xu J, Ma B. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep. 2017;7:41192. https://doi.org/10.1038/srep41192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Medcalf EJ, Gantz M, Kaminski TS, Hollfelder F. Ultra-high-throughput absorbance-activated droplet sorting for enzyme screening at kilohertz frequencies. Anal Chem. 2023;95(10):4597–604. https://doi.org/10.1021/acs.analchem.2c04144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen A, Byvank T, Chang WJ, Bharde A, Vieira G, Miller BL, Chalmers JJ, Bashir R, Sooryakumar R. On-chip magnetic separation and encapsulation of cells in droplets. Lab Chip. 2013;13(6):1172–81. https://doi.org/10.1039/c2lc41201b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mutafopulos K, Lu PJ, Garry R, Spink P, Weitz DA. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device. Lab Chip. 2020;20(21):3914–21. https://doi.org/10.1039/d0lc00723d.

    Article  CAS  PubMed  Google Scholar 

  44. Link A, McGrath JS, Zaimagaoglu M, Franke T. Active single cell encapsulation using SAW overcoming the limitations of Poisson distribution. Lab Chip. 2021;22(1):193–200. https://doi.org/10.1039/d1lc00880c.

    Article  CAS  PubMed  Google Scholar 

  45. Cao Z, Chen F, Bao N, He H, Xu P, Jana S, Jung S, Lian H, Lu C. Droplet sorting based on the number of encapsulated particles using a solenoid valve. Lab Chip. 2013;13(1):171–8. https://doi.org/10.1039/c2lc40950j.

    Article  CAS  PubMed  Google Scholar 

  46. Aubry G, Zhan M, Lu H. Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. Lab Chip. 2015;15(6):1424–31. https://doi.org/10.1039/c4lc01384k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shemesh J, Bransky A, Khoury M, Levenberg S. Advanced microfluidic droplet manipulation based on piezoelectric actuation. Biomed Microdevices. 2010;12(5):907–14. https://doi.org/10.1007/s10544-010-9445-y.

    Article  PubMed  Google Scholar 

  48. Lagus TP, Edd JF. High-throughput co-encapsulation of self-ordered cell trains: cell pair interactions in microdroplets. RSC Adv. 2013;3(43):20512–22. https://doi.org/10.1039/c3ra43624a.

    Article  CAS  Google Scholar 

  49. Luo XH, Lee AP. Overcoming double Poisson limitation for co-encapsulation in droplets through hydrodynamic close packing of cells. Microfluid Nanofluid. 2023;27(1):3. https://doi.org/10.1007/s10404-022-02600-9.

    Article  CAS  Google Scholar 

  50. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201. https://doi.org/10.1016/j.cell.2015.04.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abate AR, Chen CH, Agresti JJ, Weitz DA. Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip. 2009;9(18):2628–31. https://doi.org/10.1039/b909386a.

    Article  CAS  PubMed  Google Scholar 

  52. Collins DJ, Neild A, deMello A, Liu AQ, Ai Y. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip. 2015;15(17):3439–59. https://doi.org/10.1039/c5lc00614g.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial supports from the National Key R&D Program of China (2017YFA0700403 and 2021YFA1101500), the National Natural Science Foundation of China (22074047), and the Fundamental Research Funds for the Central Universities (2020kfyXJJS034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 790 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lin, Y., Hong, X. et al. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall. Anal Bioanal Chem 415, 5311–5322 (2023). https://doi.org/10.1007/s00216-023-04806-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04806-4

Keywords

Navigation