Skip to main content
Log in

Recent advances in mass spectrometry imaging of single cells

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mass spectrometry imaging (MSI) is a sensitive, specific, label-free imaging analysis technique that can simultaneously obtain the spatial distribution, relative content, and structural information of hundreds of biomolecules in cells and tissues, such as lipids, small drug molecules, peptides, proteins, and other compounds. The study of molecular mapping of single cells can reveal major scientific issues such as the activity pattern of living organisms, disease pathogenesis, drug-targeted therapy, and cellular heterogeneity. Applying MSI technology to the molecular mapping of single cells can provide new insights and ideas for the study of single-cell metabolomics. This review aims to provide an informative resource for those in the MSI community who are interested in single-cell imaging. Particularly, we discuss advances in imaging schemes and sample preparation, instrumentation improvements, data processing and analysis, and 3D MSI over the past few years that have allowed MSI to emerge as a powerful technique in the molecular imaging of single cells. Also, we highlight some of the most cutting-edge studies in single-cell MSI, demonstrating the future potential of single-cell MSI. Visualizing molecular distribution at the single-cell or even sub-cellular level can provide us with richer cell information, which strongly contributes to advancing research fields such as biomedicine, life sciences, pharmacodynamic testing, and metabolomics. At the end of the review, we summarize the current development of single-cell MSI technology and look into the future of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aksenov AA, da Silva R, Knight R, Lopes NP, Dorrestein PC. Global chemical analysis of biology by mass spectrometry. Nat Rev Chem. 2017;1(7):0054. https://doi.org/10.1038/s41570-017-0054.

    Article  CAS  Google Scholar 

  2. Watrous JD, Dorrestein PC. Imaging mass spectrometry in microbiology. Nat Rev Microbiol. 2011;9(9):683–94. https://doi.org/10.1038/nrmicro2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwamborn K, Caprioli RM. Molecular imaging by mass spectrometry — looking beyond classical histology. Nat Rev Cancer. 2010;10(9):639–46. https://doi.org/10.1038/nrc2917.

    Article  CAS  PubMed  Google Scholar 

  4. Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69(23):4751–60. https://doi.org/10.1021/ac970888i.

    Article  CAS  PubMed  Google Scholar 

  5. Oomen PE, Aref MA, Kaya I, Phan NTN, Ewing AG. Chemical analysis of single cells. Anal Chem. 2019;91(1):588–621. https://doi.org/10.1021/acs.analchem.8b04732.

    Article  CAS  PubMed  Google Scholar 

  6. Wang D, Bodovitz S. Single cell analysis: the new frontier in ‘omics.’ Trends Biotechnol. 2010;28(6):281–90. https://doi.org/10.1016/j.tibtech.2010.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu P, Zhang W, Xin H, Deng G. Single cell isolation and analysis. Front Cell Dev Biol. 2016;4. https://doi.org/10.3389/fcell.2016.00116.

  8. Strohm EM, Moore MJ, Kolios MC. High resolution ultrasound and photoacoustic imaging of single cells. Photoacoustics. 2016;4(1):36–42. https://doi.org/10.1016/j.pacs.2016.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gillooly JF, Hein A, Damiani R. Nuclear DNA content varies with cell size across human cell types. Cold Spring Harb Perspect Biol. 2015;7(7):a019091. https://doi.org/10.1101/cshperspect.a019091.

  10. Ginzberg MB, Kafri R, Kirschner M. On being the right (cell) size. Science. 2015;348(6236):1245075–1245075. https://doi.org/10.1126/science.1245075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ščupáková K, Balluff B, Tressler C, Adelaja T, Heeren RMA, Glunde K, et al. Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges. Clin Chem Lab Med (CCLM). 2020;58(6):914–29. https://doi.org/10.1515/cclm-2019-0858.

    Article  CAS  PubMed  Google Scholar 

  12. Kabatas S, Agüi-Gonzalez P, Hinrichs R, Jähne S, Opazo F, Diederichsen U, et al. Fluorinated nanobodies for targeted molecular imaging of biological samples using nanoscale secondary ion mass spectrometry. J Anal At Spectrom. 2019;34(6):1083–7. https://doi.org/10.1039/C9JA00117D.

    Article  CAS  Google Scholar 

  13. Zavalin A, Todd EM, Rawhouser PD, Yang J, Norris JL, Caprioli RM. Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS: single-cell imaging with transmission geometry. J Mass Spectrom. 2012;47(11):1473–81. https://doi.org/10.1002/jms.3108.

    Article  CAS  PubMed  Google Scholar 

  14. Claude E, Jones EA, Pringle SD. DESI mass spectrometry imaging (MSI) [Internet]. In: Cole LM, editor. Imaging mass spectrometry. New York, NY: Springer New York; 2017. p. 65–75. (Methods in Molecular Biology; vol 1618). Available from: https://doi.org/10.1007/978-1-4939-7051-3_7.

  15. Taylor AJ, Dexter A, Bunch J. Exploring ion suppression in mass spectrometry imaging of a heterogeneous tissue. Anal Chem. 2018;90(9):5637–45. https://doi.org/10.1021/acs.analchem.7b05005.

    Article  CAS  PubMed  Google Scholar 

  16. Biswas J, Liu Y, Singer RH, Wu B. Fluorescence imaging methods to investigate translation in single cells. Cold Spring Harb Perspect Biol. 2019;11(4):a032722. https://doi.org/10.1101/cshperspect.a032722.

  17. Weaver EM, Hummon AB. Imaging mass spectrometry: from tissue sections to cell cultures. Adv Drug Deliv Rev. 2013;65(8):1039–55. https://doi.org/10.1016/j.addr.2013.03.006.

    Article  CAS  PubMed  Google Scholar 

  18. Barut I, He X, Sener E, Sämfors S, Ewing AG, Fletcher JS. Correlative cellular mass spectrometry imaging and amperometry show dose dependent changes in lipid composition and exocytosis. Angew Chem Int Ed. 2023;62(15):e202217993. https://doi.org/10.1002/anie.202217993.

  19. Fiorentino G, Smith A, Nicora G, Bellazzi R, Magni F, Garagna S, et al. MALDI mass spectrometry imaging shows a gradual change in the proteome landscape during mouse ovarian folliculogenesis. Mol Hum Reprod. 2023;29(4):gaad006. https://doi.org/10.1093/molehr/gaad006.

  20. Bodzon-Kulakowska A, Młodawska W, Mielczarek P, Lachowicz D, Suder P, Smoluch M. Mammalian oocyte analysis by MALDI MSI with wet-interface matrix deposition technique. Materials. 2023;16(4):1479. https://doi.org/10.3390/ma16041479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng X, Wang T, Yin Z, Hang W. Single-cell imaging of AuNPs and AgNPs by near-field desorption ionization mass spectrometry. J Anal At Spectrom. 2020;35(5):927–32. https://doi.org/10.1039/C9JA00389D.

    Article  CAS  Google Scholar 

  22. Hua X, Szymanski C, Wang Z, Zhou Y, Ma X, Yu J, et al. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy. Integr Biol. 2016;8(5):635–44. https://doi.org/10.1039/c5ib00308c.

    Article  CAS  Google Scholar 

  23. Nikitina A, Huang D, Li L, Peterman N, Cleavenger SE, Fernández FM, et al. A co-registration pipeline for multimodal MALDI and confocal imaging analysis of stem cell colonies. J Am Soc Mass Spectrom. 2020;31(4):986–9. https://doi.org/10.1021/jasms.9b00094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castro DC, Smith KW, Norsworthy MD, Rubakhin SS, Weisbrod CR, Hendrickson CL, et al. Single-cell and subcellular analysis using ultrahigh resolution 21 T MALDI FTICR mass spectrometry. Anal Chem. 2023;95(17):6980–8. https://doi.org/10.1021/acs.analchem.3c00393.

    Article  CAS  PubMed  Google Scholar 

  25. Colliver TL, Brummel CL, Pacholski ML, Swanek FD, Ewing AG, Winograd N. Atomic and molecular imaging at the single-cell level with TOF-SIMS. Anal Chem. 1997;69(13):2225–31. https://doi.org/10.1021/ac9701748.

    Article  CAS  PubMed  Google Scholar 

  26. Ostrowski SG, Van Bell CT, Winograd N, Ewing AG. Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science. 2004;305(5680):71–73. https://doi.org/10.1126/science.1099791.

  27. Rubakhin SS, Greenough WT, Sweedler JV. Spatial profiling with MALDI MS: distribution of neuropeptides within single neurons. Anal Chem. 2003;75(20):5374–80. https://doi.org/10.1021/ac034498+.

    Article  CAS  PubMed  Google Scholar 

  28. Nikitina AA, Van Grouw A, Roysam T, Huang D, Fernández FM, Kemp ML. Mass spectrometry imaging reveals early metabolic priming of cell lineage in differentiating human-induced pluripotent stem cells. Anal Chem. 2023;95(11):4880–8. https://doi.org/10.1021/acs.analchem.2c04416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schober Y, Guenther S, Spengler B, Römpp A. Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem. 2012;84(15):6293–7. https://doi.org/10.1021/ac301337h.

    Article  CAS  PubMed  Google Scholar 

  30. Baker TC, Han J, Borchers CH. Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Curr Opin Biotechnol. 2017;43:62–9. https://doi.org/10.1016/j.copbio.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  31. Vallianatou T, Shariatgorji M, Nilsson A, Fridjonsdottir E, Källback P, Schintu N, et al. Molecular imaging identifies age-related attenuation of acetylcholine in retrosplenial cortex in response to acetylcholinesterase inhibition. Neuropsychopharmacol. 2019;44(12):2091–8. https://doi.org/10.1038/s41386-019-0397-5.

    Article  CAS  Google Scholar 

  32. Zhu X, Xu T, Peng C, Wu S. Advances in MALDI mass spectrometry imaging single cell and tissues. Front Chem. 2022;9:782432. https://doi.org/10.3389/fchem.2021.782432.

  33. Gilmore IS, Heiles S, Pieterse CL. Metabolic Imaging at the Single-Cell Scale: Recent Advances in Mass Spectrometry Imaging. Annual Rev. Anal. Chem. 2019;12(1):201–224. https://doi.org/10.1146/annurev-anchem-061318-115516.

  34. Bouschen W, Schulz O, Eikel D, Spengler B. Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells: SMALDI-MS of tissue and single cells. Rapid Commun Mass Spectrom. 2010;24(3):355–64. https://doi.org/10.1002/rcm.4401.

    Article  CAS  PubMed  Google Scholar 

  35. Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017;14(1):90–96. https://doi.org/10.1038/nmeth.4071.

  36. Zimmerman TA, Rubakhin SS, Sweedler JV. MALDI mass spectrometry imaging of neuronal cell cultures. J Am Soc Mass Spectrom. 2011;22(5):s13361-011-0111–2. https://doi.org/10.1007/s13361-011-0111-2.

  37. Bodzon-Kulakowska A, Arena R, Mielczarek P, Hartman K, Kozoł P, Gibuła-Tarlowska E, et al. Mouse single oocyte imaging by MALDI-TOF MS for lipidomics. Cytotechnology. 2020;72(3):455–68. https://doi.org/10.1007/s10616-020-00393-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. RamalloGuevara C, Paulssen D, Popova AA, Hopf C, Levkin PA. Fast nanoliter-scale cell assays using droplet microarray–mass spectrometry imaging. Adv Biol. 2021;5(3):2000279. https://doi.org/10.1002/adbi.202000279.

    Article  CAS  Google Scholar 

  39. Lim H, Lee SY, Park Y, Jin H, Seo D, Jang YH, et al. Mass spectrometry imaging of untreated wet cell membranes in solution using single-layer graphene. Nat Methods. 2021;18(3):316–20. https://doi.org/10.1038/s41592-020-01055-6.

    Article  CAS  PubMed  Google Scholar 

  40. Jia F, Wang J, Zhao Y, Zhang Y, Luo Q, Qi L, et al. In situ visualization of proteins in single cells by time-of-flight–secondary ion mass spectrometry coupled with genetically encoded chemical tags. Anal Chem. 2020;92(23):15517–25. https://doi.org/10.1021/acs.analchem.0c03448.

    Article  CAS  PubMed  Google Scholar 

  41. Chughtai K, Heeren RMA. Mass spectrometric imaging for biomedical tissue analysis. Chem Rev. 2010;110(5):3237–77. https://doi.org/10.1021/cr100012c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schulz S, Becker M, Groseclose MR, Schadt S, Hopf C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr Opin Biotechnol. 2019;55:51–9. https://doi.org/10.1016/j.copbio.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  43. Angel PM, Baldwin HS, Gottlieb Sen D, Su YR, Mayer JE, Bichell D, et al. Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve. Biochim Biophys Acta (BBA) Proteins Proteom. 2017;1865(7):927–935. https://doi.org/10.1016/j.bbapap.2017.03.009.

  44. Greco F, Quercioli L, Pucci A, Rocchiccioli S, Ferrari M, Recchia FA, et al. Mass spectrometry imaging as a tool to investigate region specific lipid alterations in symptomatic human carotid atherosclerotic plaques. Metabolites. 2021;11(4):250. https://doi.org/10.3390/metabo11040250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods. 2007;4(10):828–33. https://doi.org/10.1038/nmeth1094.

    Article  CAS  PubMed  Google Scholar 

  46. Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2018;90(1):240–65. https://doi.org/10.1021/acs.analchem.7b04733.

    Article  CAS  PubMed  Google Scholar 

  47. Soltwisch J, Kettling H, Vens-Cappell S, Wiegelmann M, Müthing J, Dreisewerd K. Mass spectrometry imaging with laser-induced postionization. Science. 2015;348(6231):211–5. https://doi.org/10.1126/science.aaa1051.

    Article  CAS  PubMed  Google Scholar 

  48. Niehaus M, Soltwisch J, Belov ME, Dreisewerd K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods. 2019;16(9):925–31. https://doi.org/10.1038/s41592-019-0536-2.

    Article  CAS  PubMed  Google Scholar 

  49. Laiko VV, Moyer SC, Cotter RJ. Atmospheric pressure MALDI/ion trap mass spectrometry. Anal Chem. 2000;72(21):5239–43. https://doi.org/10.1021/ac000530d.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang J, LaMotte L, Dodds ED, Lebrilla CB. Atmospheric pressure MALDI Fourier transform mass spectrometry of labile oligosaccharides. Anal Chem. 2005;77(14):4429–38. https://doi.org/10.1021/ac050010o.

    Article  CAS  PubMed  Google Scholar 

  51. Boxer SG, Kraft ML, Weber PK. Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys. 2009;38(1):53–74. https://doi.org/10.1146/annurev.biophys.050708.133634.

    Article  CAS  PubMed  Google Scholar 

  52. Fletcher JS. Cellular imaging with secondary ion mass spectrometry. Analyst. 2009;134(11):2204–15. https://doi.org/10.1039/B913575H.

    Article  CAS  PubMed  Google Scholar 

  53. Gyngard F, Steinhauser ML. Biological explorations with nanoscale secondary ion mass spectrometry. J Anal At Spectrom. 2019;34(8):1534–45. https://doi.org/10.1039/C9JA00171A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu X, Jiao C, Li K, Hao M, Moore KatieL, Burnett TimothyL, et al. Application of high-spatial-resolution secondary ion mass spectrometry for nanoscale chemical mapping of lithium in an Al-Li alloy. Mater Charact. 2021;181:111442. https://doi.org/10.1016/j.matchar.2021.111442.

  55. Slaveykova VI, Guignard C, Eybe T, Migeon H-N, Hoffmann L. Dynamic nanoSIMS ion imaging of unicellular freshwater algae exposed to copper. Anal Bioanal Chem. 2009;393(2):583–9. https://doi.org/10.1007/s00216-008-2486-x.

    Article  CAS  PubMed  Google Scholar 

  56. Winograd N. Gas cluster ion beams for secondary ion mass spectrometry. Annual Rev Anal Chem. 2018;11(1):29–48. https://doi.org/10.1146/annurev-anchem-061516-045249.

    Article  CAS  Google Scholar 

  57. Phan NTN, Fletcher JS, Ewing AG. Lipid structural effects of oral administration of methylphenidate in Drosophila brain by secondary ion mass spectrometry imaging. Anal Chem. 2015;87(8):4063–71. https://doi.org/10.1021/acs.analchem.5b00555.

  58. Ninomiya S, Ichiki K, Yamada H, Nakata Y, Seki T, Aoki T, et al. Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams: depth profiling of polymers with large Ar cluster ion beams. Rapid Commun Mass Spectrom. 2009;23(11):1601–6. https://doi.org/10.1002/rcm.4046.

    Article  CAS  PubMed  Google Scholar 

  59. Chu Y-H, Liao H-Y, Lin K-Y, Chang H-Y, Kao W-L, Kuo D-Y, et al. Improvement of the gas cluster ion beam-(GCIB)-based molecular secondary ion mass spectroscopy (SIMS) depth profile with O 2 + cosputtering. Analyst. 2016;141(8):2523–33. https://doi.org/10.1039/C5AN02677F.

    Article  CAS  PubMed  Google Scholar 

  60. Wucher A, Breuer L, Winograd N. Ionization probability of sputtered indium under irradiation with 20-keV fullerene and argon gas cluster projectiles. Int J Mass Spectrom. 2019;438:13–21. https://doi.org/10.1016/j.ijms.2018.12.007.

    Article  CAS  Google Scholar 

  61. Philipsen MH, Phan NTN, Fletcher JS, Malmberg P, Ewing AG. Mass spectrometry imaging shows cocaine and methylphenidate have opposite effects on major lipids in Drosophila brain. ACS Chem Neurosci. 2018;9(6):1462–8. https://doi.org/10.1021/acschemneuro.8b00046.

    Article  CAS  PubMed  Google Scholar 

  62. Tian H, Wucher A, Winograd N. Reduce the matrix effect in biological tissue imaging using dynamic reactive ionization and gas cluster ion beams. Biointerphases. 2016;11(2):02A320. https://doi.org/10.1116/1.4941366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tian H, Maciążek D, Postawa Z, Garrison BJ, Winograd N. CO 2 cluster ion beam, an alternative projectile for secondary ion mass spectrometry. J Am Soc Mass Spectrom. 2016;27(9):1476–82. https://doi.org/10.1007/s13361-016-1423-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mohammadi AS, Li X, Ewing AG. Mass spectrometry imaging suggests that cisplatin affects exocytotic release by alteration of cell membrane lipids. Anal Chem. 2018;90(14):8509–16. https://doi.org/10.1021/acs.analchem.8b01395.

    Article  CAS  PubMed  Google Scholar 

  65. Tian H, Sparvero LJ, Blenkinsopp P, Amoscato AA, Watkins SC, Bayır H, et al. Secondary-ion mass spectrometry images cardiolipins and phosphatidylethanolamines at the subcellular level. Angew Chem Int Ed. 2019;58(10):3156–61. https://doi.org/10.1002/anie.201814256.

    Article  CAS  Google Scholar 

  66. Pareek V, Tian H, Winograd N, Benkovic SJ. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science. 2020;368(6488):283–90. https://doi.org/10.1126/science.aaz6465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sheraz S, Tian H, Vickerman JC, Blenkinsopp P, Winograd N, Cumpson P. Enhanced ion yields using high energy water cluster beams for secondary ion mass spectrometry analysis and imaging. Anal Chem. 2019;91(14):9058–68. https://doi.org/10.1021/acs.analchem.9b01390.

    Article  CAS  PubMed  Google Scholar 

  68. Sparvero LJ, Tian H, Amoscato AA, Sun W, Anthonymuthu TS, Tyurina YY, et al. Direct mapping of phospholipid ferroptotic death signals in cells and tissues by gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS). Angew Chem Int Ed. 2021;60(21):11784–8. https://doi.org/10.1002/anie.202102001.

    Article  CAS  Google Scholar 

  69. Tian H, Sheraz née Rabbani S, Vickerman JC, Winograd N. Multiomics imaging using high-energy water gas cluster ion beam secondary ion mass spectrometry [(H 2 O) n -GCIB-SIMS] of frozen-hydrated cells and tissue. Anal Chem. 2021;93(22):7808–7814. https://doi.org/10.1021/acs.analchem.0c05210.

  70. Dueñas ME, Lee YJ. Single-cell metabolomics by mass spectrometry imaging. In: Hu, S. (eds) Cancer Metabolomics. Advances in Experimental Medicine and Biology, vol 1280. Springer, Cham. 2021. https://doi.org/10.1007/978-3-030-51652-9_5.

  71. Liu Y, Hu Z, Li M, Gao S. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chin Sci Bull. 2013;58(32):3863–78. https://doi.org/10.1007/s11434-013-5901-4.

    Article  CAS  Google Scholar 

  72. Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Baranov VI, Hedley DW. Imaging mass cytometry. Cytometry. 2017;91(2):160–9. https://doi.org/10.1002/cyto.a.23053.

    Article  PubMed  Google Scholar 

  73. Theiner S, Schweikert A, Van Malderen SJM, Schoeberl A, Neumayer S, Jilma P, et al. Laser ablation-inductively coupled plasma time-of-flight mass spectrometry imaging of trace elements at the single-cell level for clinical practice. Anal Chem. 2019;91(13):8207–12. https://doi.org/10.1021/acs.analchem.9b00698.

    Article  CAS  PubMed  Google Scholar 

  74. Paulus H, Müller KH, Melzer W, Peine HW, Thier B, Weisgerber A. Applications of SNMS in archaeometry. Fresenius J Anal Chem. 1995;353:369–371. https://doi.org/10.1007/s0021653530369.

  75. Mandel M, Holtmann L, Raiwa M, Wunnenberg-Gust A, Riebe B, Walther C. Imaging of I, Re and Tc plant uptake on the single-cell scale using SIMS and rL-SNMS. J Hazard Mater. 2022;423:127143. https://doi.org/10.1016/j.jhazmat.2021.127143.

  76. Yin Z, Cheng X, Liu R, Li X, Hang L, Hang W, et al. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry. Angew Chem Int Ed. 2019;58(14):4541–6. https://doi.org/10.1002/anie.201813744.

    Article  CAS  Google Scholar 

  77. Cheng X, Yin Z, Rong L, Hang W. Subcellular chemical imaging of structurally similar acridine drugs by near-field laser desorption/laser postionization mass spectrometry. Nano Res. 2020;13(3):745–51. https://doi.org/10.1007/s12274-020-2686-z.

    Article  CAS  Google Scholar 

  78. Meng Y, Cheng X, Wang T, Hang W, Li X, Nie W, et al. Micro-lensed fiber laser desorption mass spectrometry imaging reveals subcellular distribution of drugs within single cells. Angew Chem Int Ed. 2020;59(41):17864–71. https://doi.org/10.1002/anie.202002151.

    Article  CAS  Google Scholar 

  79. Meng Y, Gao C, Lu Q, Ma S, Hang W. Single-cell mass spectrometry imaging of multiple drugs and nanomaterials at organelle level. ACS Nano. 2021;15(8):13220–9. https://doi.org/10.1021/acsnano.1c02922.

    Article  CAS  PubMed  Google Scholar 

  80. Narendra DP, Guillermier C, Gyngard F, Huang X, Ward ME, Steinhauser ML. Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover. J Cell Biol. 2020;219(1):e201901097. https://doi.org/10.1083/jcb.201901097.

  81. Waas M, Kislinger T. Addressing cellular heterogeneity in cancer through precision proteomics. J Proteome Res. 2020;19(9):3607–19. https://doi.org/10.1021/acs.jproteome.0c00338.

    Article  CAS  Google Scholar 

  82. Corvera S. Cellular heterogeneity in adipose tissues. Annu Rev Physiol. 2021;83(1):257–78. https://doi.org/10.1146/annurev-physiol-031620-095446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu XG, Birsoy K. Deciphering cellular heterogeneity of pancreatic tumours. Nat Cell Biol. 2019;21(11):1305–6. https://doi.org/10.1038/s41556-019-0419-x.

    Article  CAS  PubMed  Google Scholar 

  84. Scupakova K, Dewez F, Walch AK, Heeren RMA, Balluff B. Morphometric cell classification for single-cell MALDI-mass spectrometry imaging. Angew Chem-Int Ed. 2020;59(40):17447–50. https://doi.org/10.1002/anie.202007315.

    Article  CAS  Google Scholar 

  85. Rappez L, Stadler M, Triana S, Gathungu RM, Ovchinnikova K, Phapale P, et al. SpaceM reveals metabolic states of single cells. Nat Methods. 2021;18(7):799–805. https://doi.org/10.1038/s41592-021-01198-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bien T, Koerfer K, Schwenzfeier J, Dreisewerd K, Soltwisch J. Mass spectrometry imaging to explore molecular heterogeneity in cell culture. Proc Natl Acad Sci USA. 2022;119(29):e2114365119. https://doi.org/10.1073/pnas.2114365119.

  87. Machálková M, Pavlatovská B, Michálek J, Pruška A, Štěpka K, Nečasová T, et al. Drug penetration analysis in 3D cell cultures using fiducial-based semiautomatic coregistration of MALDI MSI and immunofluorescence images. Anal Chem. 2019;91(21):13475–84. https://doi.org/10.1021/acs.analchem.9b02462.

    Article  CAS  PubMed  Google Scholar 

  88. Ahlf DR, Masyuko RN, Hummon AB, Bohn PW. Correlated mass spectrometry imaging and confocal Raman microscopy for studies of three-dimensional cell culture sections. Analyst. 2014;139(18):4578–85. https://doi.org/10.1039/C4AN00826J.

    Article  CAS  PubMed  Google Scholar 

  89. Randall EC, Lopez BGC, Peng S, Regan MS, Abdelmoula WM, Basu SS, et al. Localized metabolomic gradients in patient-derived xenograft models of glioblastoma. Can Res. 2020;80(6):1258–67. https://doi.org/10.1158/0008-5472.CAN-19-0638.

    Article  CAS  Google Scholar 

  90. Dueñas ME, Essner JJ, Lee YJ. 3D MALDI mass spectrometry imaging of a single cell: spatial mapping of lipids in the embryonic development of zebrafish. Sci Rep. 2017;7(1):14946. https://doi.org/10.1038/s41598-017-14949-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li X, Hang L, Wang T, Leng Y, Zhang H, Meng Y, et al. Nanoscale three-dimensional imaging of drug distributions in single cells via laser desorption post-ionization mass spectrometry. J Am Chem Soc. 2021;143(51):21648–56. https://doi.org/10.1021/jacs.1c10081.

    Article  CAS  PubMed  Google Scholar 

  92. Passarelli MK, Newman CF, Marshall PS, West A, Gilmore IS, Bunch J, et al. Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging. Anal Chem. 2015;87(13):6696–702. https://doi.org/10.1021/acs.analchem.5b00842.

    Article  CAS  PubMed  Google Scholar 

  93. Lanni EJ, Rubakhin SS, Sweedler JV. Mass spectrometry imaging and profiling of single cells. J Proteomics. 2012;75(16):5036–51. https://doi.org/10.1016/j.jprot.2012.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hua X, Li H-W, Long Y-T. Investigation of silver nanoparticle induced lipids changes on a single cell surface by time-of-flight secondary ion mass spectrometry. Anal Chem. 2018;90(2):1072–6. https://doi.org/10.1021/acs.analchem.7b04591.

    Article  CAS  PubMed  Google Scholar 

  95. Priyadarshani P, Mortensen LJ. Investigating lipid mechanisms of MSC immune modulation using metabolic and phenotypic single cell profiling. Cytotherapy. 2020;22(5):S97. https://doi.org/10.1016/j.jcyt.2020.03.168.

    Article  Google Scholar 

  96. Kadesch P, Hollubarsch T, Gerbig S, Schneider L, Silva LMR, Hermosilla C, et al. Intracellular parasites Toxoplasma gondii and Besnoitia besnoiti, unveiled in single host cells using AP-SMALDI MS imaging. J Am Soc Mass Spectrom. 2020;31(9):1815–24. https://doi.org/10.1021/jasms.0c00043.

    Article  CAS  PubMed  Google Scholar 

  97. Agüi-Gonzalez P, Guobin B, Gomes de Castro MA, Rizzoli SO, Phan NTN. Secondary ion mass spectrometry imaging reveals changes in the lipid structure of the plasma membranes of hippocampal neurons following drugs affecting neuronal activity. ACS Chem Neurosci. 2021;12(9):1542–1551. https://doi.org/10.1021/acschemneuro.1c00031.

  98. Capolupo L, Khven I, Lederer AR, Mazzeo L, Glousker G, Ho S, et al. Sphingolipids control dermal fibroblast heterogeneity. Science. 2022;376(6590):eabh1623. https://doi.org/10.1126/science.abh1623.

  99. Neumann EK, Djambazova KV, Caprioli RM, Spraggins JM. Multimodal imaging mass spectrometry: next generation molecular mapping in biology and medicine. J Am Soc Mass Spectrom. 2020;31(12):2401–15. https://doi.org/10.1021/jasms.0c00232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin Y, Wu K, Jia F, Chen L, Wang Z, Zhang Y, et al. Single cell imaging reveals cisplatin regulating interactions between transcription (co)factors and DNA. Chem Sci. 2021;12(15):5419–29. https://doi.org/10.1039/D0SC06760A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Courrèges C, Bonnecaze M, Flahaut D, Nolivos S, Grimaud R, Allouche J. AES and ToF-SIMS combination for single cell chemical imaging of gold nanoparticle-labeled Escherichia coli. Chem Commun. 2021;57(44):5446–9. https://doi.org/10.1039/D1CC01211H.

    Article  Google Scholar 

  102. Bergman H-M, Lanekoff I. Profiling and quantifying endogenous molecules in single cells using nano-DESI MS. Analyst. 2017;142(19):3639–47. https://doi.org/10.1039/C7AN00885F.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research & Development Program of China (No. 2022YFA1103602) and the National Natural Science Foundation of China (No. 21874153).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yehua Han or Honggang Nie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hu, W., Han, Y. et al. Recent advances in mass spectrometry imaging of single cells. Anal Bioanal Chem 415, 4093–4110 (2023). https://doi.org/10.1007/s00216-023-04774-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04774-9

Keywords

Navigation