Skip to main content
Log in

A rapid single-phase extraction for polar staphylococcal lipids

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The lipid membrane is gaining appreciation as a critical factor in the emergence of antibiotic resistance, both for antibiotics that target lipid synthesis or the membrane directly and for cell-wall-targeting antibiotics. The methods used to study the emergence of antibiotic resistance in vitro can generate a large number of samples that may be low in volume and in cell density. As in eukaryotic/mammalian lipidomics, two-phase liquid-liquid extractions are the most commonly used approach to recover lipids from bacteria. The need to separate the lipid layer is cumbersome for high-throughput applications and can be a source of poor reproducibility or contaminant introduction. While several single-phase extractions have been proposed for serum, tissue, and eukaryotic cells, there have been far fewer efforts to adapt or develop such methods for bacteria lipidomics. Here, we describe a simple, single-phase lipid extraction method based on methanol, acetonitrile, and water—the MAW method. The merits of the MAW method are evaluated against the Bligh & Dyer (B&D) method for the recovery of the major membrane lipids (phosphatidylglycerols, diglycosyldiacylglycerols, and lysyl-phosphatidylglycerols) in the Gram-positive pathogen Staphylococcus aureus. We demonstrate that the MAW method achieves recoveries that are comparable to that of the B&D extraction (≥ 85% for PG 15:0/d7-18:1). The benefits of the MAW method enable the detection of lipids from lower amounts of bacteria than the B&D method (0.57 vs 0.74 McFarlands for PG 32:0, respectively) and is easily scaled down to microplate volumes to facilitate high-throughput studies of bacterial lipids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Canepari P, Boaretti M. Lipoteichoic acid as a target for antimicrobial action. Microb Drug Resist-Mech Epidemiol Dis. 1996;2(1):85-9.

  2. Malabarba A, Goldstein BP. Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother. 2005;55(suppl_2):ii15-ii20.

  3. Fowler VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–65.

    Article  CAS  PubMed  Google Scholar 

  4. Yao JW, Rock CO. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem. 2015;290(10):5940–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gloux K, Guillemet M, Soler C, Morvan C, Halpern D, Pourcel C, et al. Clinical relevance of type II fatty acid synthesis bypass in Staphylococcus aureus. Antimicrob Agents Chemother. 2017;61(5):e02515–16.

  6. Hayden MK, Rezai K, Hayes RA, Lolans K, Quinn JP, Weinstein RA. Development of daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005;43(10):5285–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones T, Yeaman MR, Sakoulas G, Yang SJ, Proctor RA, Sahl HG, et al. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother. 2008;52(1):269–78.

    Article  CAS  PubMed  Google Scholar 

  8. Mishra NN, Yang SJ, Sawa A, Rubio A, Nast CC, Yeaman MR, et al. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(6):2312–8.

  9. Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, et al. Characterization of the mechanisms of daptomycin resistance among Gram-positive bacterial pathogens by multidimensional lipidomics. mSphere. 2017;2(6):e00492–17.

  10. Hines KM, Xu L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chem Phys Lipids. 2019;219:15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hines KM, Shen T, Ashford NK, Waalkes A, Penewit K, Holmes EA, et al. Occurrence of cross-resistance and beta-lactam seesaw effect in glycopeptide-, lipopeptide- and lipoglycopeptide-resistant MRSA correlates with membrane phosphatidylglycerol levels. J Antimicrob Chemother. 2020;75(5):1182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Werth BJ, Sakoulas G, Rose WE, Pogliano J, Tewhey R, Rybak MJ. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2013;57(1):66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Werth BJ, Steed ME, Kaatz GW, Rybak MJ. Evaluation of ceftaroline activity against heteroresistant vancomycin-intermediate Staphylococcus aureus and vancomycin-intermediate methicillin-resistant S. aureus strains in an in vitro pharmacokinetic/pharmacodynamic model: exploring the “seesaw effect”. Antimicrob Agents Chemother. 2013;57(6):2664–8.

  14. Werth BJ. Exploring the pharmacodynamic interactions between tedizolid and other orally bioavailable antimicrobials against Staphylococcus aureus and Staphylococcus epidermidis. J Antimicrob Chemother. 2017;72(5):1410–14.

  15. Zhang R, Barreras Beltran IA, Ashford NK, Penewit K, Waalkes A, Holmes EA, et al. Synergy between beta-lactams and lipo-, glyco-, and lipoglycopeptides, is independent of the seesaw effect in methicillin-resistant Staphylococcus aureus. Front Mol Biosci. 2021;8: 688357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.

    Article  CAS  PubMed  Google Scholar 

  17. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

    Article  CAS  PubMed  Google Scholar 

  18. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cruz M, Wang M, Frisch-Daiello J, Han X. Improved butanol-methanol (BUME) method by replacing acetic acid for lipid extraction of biological samples. Lipids. 2016;51(7):887–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lofgren L, Stahlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53(8):1690–700.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lofgren L, Forsberg GB, Stahlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep. 2016;6:27688.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mirnaghi FS, Chen Y, Sidisky LM, Pawliszyn J. Optimization of the coating procedure for a high-throughput 96-blade solid phase microextraction system coupled with LC-MS/MS for analysis of complex samples. Anal Chem. 2011;83(15):6018–25.

    Article  CAS  PubMed  Google Scholar 

  23. Birjandi AP, Bojko B, Ning Z, Figeys D, Pawliszyn J. High throughput solid phase microextraction: a new alternative for analysis of cellular lipidome? J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1043:12–9.

    Article  CAS  PubMed  Google Scholar 

  24. Garwolinska D, Hewelt-Belka W, Namiesnik J, Kot-Wasik A. Rapid characterization of the human breast milk lipidome using a solid-phase microextraction and liquid chromatography mass spectrometry-based approach. J Proteome Res. 2017;16(9):3200–8.

    Article  CAS  PubMed  Google Scholar 

  25. Reyes-Garces N, Gionfriddo E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. Trac-Trends Anal Chem. 2019;113:172–81.

    Article  CAS  Google Scholar 

  26. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in frozen human plasma. J Lipid Res. 2017;58(12):2275–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao Z, Xu Y. An extremely simple method for extraction of lysophospholipids and phospholipids from blood samples. J Lipid Res. 2010;51(3):652–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Southam AD, Haglington LD, Najdekr L, Jankevics A, Weber RJM, Dunn WB. Assessment of human plasma and urine sample preparation for reproducible and high-throughput UHPLC-MS clinical metabolic phenotyping. Analyst. 2020;145(20):6511–23.

    Article  CAS  PubMed  Google Scholar 

  29. Horing M, Stieglmeier C, Schnabel K, Hallmark T, Ekroos K, Burkhardt R, et al. Benchmarking one-phase lipid extractions for plasma lipidomics. Anal Chem. 2022;94(36):12292–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alvarez HM, Steinbuchel A. Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol. 2002;60(4):367–76.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang YM, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 2008;6(3):222–33.

    Article  PubMed  Google Scholar 

  32. Alshehry ZH, Barlow CK, Weir JM, Zhou Y, McConville MJ, Meikle PJ. An efficient single phase method for the extraction of plasma lipids. Metabolites. 2015;5(2):389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moreira R, Taylor SD. The impact of lysyl-phosphatidylglycerol on the interaction of daptomycin with model membranes. Org Biomol Chem. 2022;20:9319–29.

  34. Medina J, Borreggine R, Teav T, Gao L, Ji S, Carrard J, et al. Omic-scale high-throughput quantitative LC-MS/MS approach for circulatory lipid phenotyping in clinical research. Anal Chem. 2023;95(6):3168–79.

    Article  CAS  PubMed  Google Scholar 

  35. Institute. CaLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard-eleventh edition. Wayne, PA; 2018.

  36. Wilson DA, Young S, Timm K, Novak-Weekley S, Marlowe EM, Madisen N, et al. Multicenter evaluation of the Bruker MALDI biotyper CA system for the identification of clinically important bacteria and yeasts. Am J Clin Pathol. 2017;147(6):623–31.

    Article  CAS  PubMed  Google Scholar 

  37. Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Antimicrobial Therapeutics Reviews: the Bacterial Cell Wall as an Antimicrobial Target. 2013;1277:139-58.

Download references

Acknowledgements

This work was supported by funds to K.M.H. from the University of Georgia Office of Research, the Office of the Provost, the Franklin College of Arts & Sciences, and the Department of Chemistry. Additional financial support was provided to K.B. from the University of Georgia Graduate School Summer Research Grant program. The authors would like to thank Prof. Libin Xu and Prof. Brian Werth (University of Washington School of Pharmacy) for providing S. aureus strain JE2-Dap2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly M. Hines.

Ethics declarations

Statements and disclosures

The authors have no financial or non-financial interests to disclose.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2230 KB)

Supplementary file2 (XLSX 466 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bimpeh, K., Hines, K.M. A rapid single-phase extraction for polar staphylococcal lipids. Anal Bioanal Chem 415, 4591–4602 (2023). https://doi.org/10.1007/s00216-023-04758-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04758-9

Keywords

Navigation