Skip to main content
Log in

Bioconjugation of nanozyme and natural enzyme to enable a one-step cascade reaction for the detection of metabolites

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanozyme, with enzyme-mimicking activity and excellent stability, has attracted extensive attention. However, some inherent disadvantages, including poor dispersion, low selectivity, and insufficient peroxidase-like activity, still limit its further development. Therefore, an innovative bioconjugation of a nanozyme and natural enzyme was conducted. In the presence of graphene oxide (GO), histidine magnetic nanoparticles (H-Fe3O4) were first synthesized by a solvothermal method. The GO-supported H-Fe3O4 (GO@H-Fe3O4) exhibited superior dispersity and biocompatibility because GO was the carrier and possessed outstanding peroxidase-like activity because of the introduction of histidine. Furthermore, the mechanism of the peroxidase-like activity of GO@H-Fe3O4 was the generation of •OH. Uric acid oxidase (UAO) was selected as the model natural enzyme and covalently linked to GO@H-Fe3O4 with hydrophilic poly(ethylene glycol) as a linker. UAO could specifically catalyze the oxidation of uric acid (UA) to generate H2O2, and subsequently, the newly produced H2O2 oxidized the colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue ox-TMB under the catalysis of GO@H-Fe3O4. Based on the above cascade reaction, the GO@H-Fe3O4-linked UAO (GHFU) and GO@H-Fe3O4-linked ChOx (GHFC) were used for the detection of UA in serum samples and cholesterol (CS) in milk, respectively. The method based on GHFU exhibited a wide detection range (5–800 μM) and a low detection limit (1.5 μM) for UA, and the method based on GHFC exhibited a wide detection range (4–400 μM) and a low detection limit (1.13 μM) for CS. These results demonstrated that the proposed strategy had great potential in the field of clinical detection and food safety.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Fig. 4

Similar content being viewed by others

References

  1. Liang J, Liang K. Multi-enzyme cascade reactions in metal-organic frameworks. Chem Rec. 2020;20(10):1100–16. https://doi.org/10.1002/tcr.202000067.

    Article  CAS  PubMed  Google Scholar 

  2. Wang D, Chai Y, Yuan Y, Yuan R. Lattice-like DNA tetrahedron nanostructure as scaffold to locate GOx and HRP enzymes for highly efficient enzyme cascade reaction. ACS Appl Mater Interfaces. 2020;12(2):2871–7. https://doi.org/10.1021/acsami.9b18702.

    Article  CAS  PubMed  Google Scholar 

  3. Becker M, Nikel P, Andexer JN, Lutz S, Rosenthal K. A Multi-enzyme cascade reaction for the production of 2′3′-cGAMP. Biomolecules. 2021;11(4):590. https://doi.org/10.3390/biom11040590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao J, Wang S, Lu S, Bao X, Sun J, Yang X. An enzyme cascade-triggered fluorogenic and chromogenic reaction applied in enzyme activity assay and immunoassay. Anal Chem. 2018;90(12):7754–60. https://doi.org/10.1021/acs.analchem.8b01845.

    Article  CAS  PubMed  Google Scholar 

  5. Yan Y, Qiao Z, Hai X, Song W, Bi S. Versatile electrochemical biosensor based on bi-enzyme cascade biocatalysis spatially regulated by DNA architecture. Biosens Bioelectron. 2021;174:112827. https://doi.org/10.1016/j.bios.2020.112827.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Jia G, Cui X, Zhao X, Zhang Q, Gu L, Zheng L, Li LH, Wu Q, Singh DJ, Matsumura D, Tsuji T, Cui Y-T, Zhao J, Zheng W. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem. 2021;7(2):436–49. https://doi.org/10.1016/j.chempr.2020.10.023.

    Article  CAS  Google Scholar 

  7. Li Y, Li S, Bao M, Zhang L, Carraro C, Maboudian R, Liu A, Wei W, Zhang Y, Liu S. Pd nanoclusters confined in ZIF-8 matrixes for fluorescent detection of glucose and cholesterol. ACS Applied Nano Materials. 2021;4(9):9132–42. https://doi.org/10.1021/acsanm.1c01712.

    Article  CAS  Google Scholar 

  8. Xu Q, Yuan H, Dong X, Zhang Y, Asif M, Dong Z, He W, Ren J, Sun Y, Xiao F. Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples. Biosens Bioelectron. 2018;107:153–62. https://doi.org/10.1016/j.bios.2018.02.026.

    Article  CAS  PubMed  Google Scholar 

  9. Dehvari K, Chiu SH, Lin JS, Girma WM, Ling YC, Chang JY. Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomater. 2020;114:343–57. https://doi.org/10.1016/j.actbio.2020.07.022.

    Article  CAS  PubMed  Google Scholar 

  10. Wu GW, He SB, Peng HP, Deng HH, Liu AL, Lin XH, Xia XH, Chen W. Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing. Anal Chem. 2014;86(21):10955–60. https://doi.org/10.1021/ac503544w.

    Article  CAS  PubMed  Google Scholar 

  11. Fu Z, Zeng W, Cai S, Li H, Ding J, Wang C, Chen Y, Han N, Yang R. Porous Au@Pt nanoparticles with superior peroxidase-like activity for colorimetric detection of spike protein of SARS-CoV-2. J Colloid Interface Sci. 2021;604:113–21. https://doi.org/10.1016/j.jcis.2021.06.170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun L, Ding Y, Jiang Y, Liu Q. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens Actuators, B Chem. 2017;239:848–56. https://doi.org/10.1016/j.snb.2016.08.094.

    Article  CAS  Google Scholar 

  13. Sun Y, Shi F, Niu Y, Zhang Y, Xiong F. Fe3O4@OA@Poloxamer nanoparticles lower triglyceride in hepatocytes through liposuction effect and nano-enzyme effect. Colloids Surf B Biointerfaces. 2019;184:110528. https://doi.org/10.1016/j.colsurfb.2019.110528.

    Article  CAS  PubMed  Google Scholar 

  14. Xu J, Qing T, Jiang Z, Zhang P, Feng B. Graphene oxide-regulated low-background aptasensor for the “turn on” detection of tetracycline. Spectrochimica Acta Part A: Mol Biomol Spectroscopy. 2021;260:119898. https://doi.org/10.1016/j.saa.2021.119898.

    Article  CAS  Google Scholar 

  15. Petrucci R, Chiarotto I, Mattiello L, Passeri D, Rossi M, Zollo G, Feroci AM. Graphene oxide: a smart (starting) material for natural methylxanthines adsorption and detection. Molecules. 2019;24(23):4247. https://doi.org/10.3390/molecules24234247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deng Y, Gao Q, Ma J, Wang C, Wei Y. Preparation of a boronate affinity material with ultrahigh binding capacity for cis-diols by grafting polymer brush from polydopamine-coated magnetized graphene oxide. Mikrochim Acta. 2018;185(3):189. https://doi.org/10.1007/s00604-018-2732-7.

    Article  CAS  PubMed  Google Scholar 

  17. Dey N, Bhattacharya S. Nanomolar level detection of uric acid in blood serum and pest-infested grain samples by an amphiphilic probe. Anal Chem. 2017;89(19):10376–83. https://doi.org/10.1021/acs.analchem.7b02344.

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Song Y, Bo X, Min J, Pak OS, Zhu L, Wang M, Tu J, Kogan A, Zhang H, Hsiai TK, Li Z, Gao W. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol. 2020;38(2):217–24. https://doi.org/10.1038/s41587-019-0321-x.

    Article  CAS  PubMed  Google Scholar 

  19. Menotti A, Lanti M, Zanchetti A, Botta G, Laurenzi M, Terradura-Vagnarelli O. Mancini M The role of HDL cholesterol in metabolic syndrome predicting cardiovascular events. The Gubbio population study. Nutr Metab Cardiovasc Dis. 2011;21(5):315–22. https://doi.org/10.1016/j.numecd.2009.11.001.

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Kong C, Chen Z. Colorimetric sensor arrays for antioxidant discrimination based on the inhibition of the oxidation reaction between 3,3′,5,5′-tetramethylbenzidine and hydrogen peroxides. ACS Appl Mater Interfaces. 2019;11(9):9504–9. https://doi.org/10.1021/acsami.8b18548.

    Article  CAS  PubMed  Google Scholar 

  21. Qu S, Li Z, Jia Q. Detection of purine metabolite uric acid with picolinic-acid-functionalized metal-organic frameworks. ACS Appl Mater Interfaces. 2019;11(37):34196–202. https://doi.org/10.1021/acsami.9b07442.

    Article  CAS  PubMed  Google Scholar 

  22. Batra N, Tomar M, Gupta V. ZnO-CuO composite matrix based reagentless biosensor for detection of total cholesterol. Biosens Bioelectron. 2015;67:263–71. https://doi.org/10.1016/j.bios.2014.08.029.

    Article  CAS  PubMed  Google Scholar 

  23. Jeon WY, Lee CJ, Sut TN, Kim HH, Choi YB. Pentacyanoammineferrate-based non-enzymatic electrochemical biosensing platform for selective uric acid measurement. Sensors (Basel). 2021;21(5):1574. https://doi.org/10.3390/s21051574.

    Article  CAS  PubMed  Google Scholar 

  24. Faruk Hossain M, Slaughter G. Flexible electrochemical uric acid and glucose biosensor. Bioelectrochemistry. 2021;141:107870. https://doi.org/10.1016/j.bioelechem.2021.107870.

    Article  CAS  PubMed  Google Scholar 

  25. Kim I, Kim YI, Lee SW, Jung HG, Lee G. Yoon DS Highly permselective uric acid detection using kidney cell membrane-functionalized enzymatic biosensors. Biosens Bioelectron. 2021;190:113411. https://doi.org/10.1016/j.bios.2021.113411.

    Article  CAS  PubMed  Google Scholar 

  26. Hassanzadeh J, Khataee A. Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots. Talanta. 2018;178:992–1000. https://doi.org/10.1016/j.talanta.2017.08.107.

    Article  CAS  PubMed  Google Scholar 

  27. Fan K, Wang H, Xi J, Liu Q, Meng X, Duan D, Gao L, Yan X. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun (Camb). 2016;53(2):424–7. https://doi.org/10.1039/c6cc08542c.

    Article  PubMed  Google Scholar 

  28. Ma H, Li M, Yu T, Zhang H, Xiong M, Li F. Magnetic ZIF-8-based mimic multi-enzyme system as a colorimetric biosensor for detection of aryloxyphenoxypropionate herbicides. ACS Appl Mater Interfaces. 2021;13(37):44329–38. https://doi.org/10.1021/acsami.1c11815.

    Article  CAS  PubMed  Google Scholar 

  29. Duan R, Peng C, Sun L, Zhang LX, Bai CC, Dong LY. Wang XH Integrating boronate affinity controllable-oriented surface imprinting nylon wire and pH-triggered allochroic-graphene oxide for ultrasensitive detection of glycoprotein. Sensors and Actuators B: Chemical. 2021;330:129310. https://doi.org/10.1016/j.snb.2020.129310.

    Article  CAS  Google Scholar 

  30. Wang Q, Zhang X, Huang L, Zhang Z, Dong S. GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis. Angew Chem Int Ed Engl. 2017;56(50):16082–5. https://doi.org/10.1002/anie.201710418.

    Article  CAS  PubMed  Google Scholar 

  31. Li W, Fan GC, Gao F, Cui Y, Wang W, Luo X. High-activity Fe3O4 nanozyme as signal amplifier: a simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens Bioelectron. 2019;127:64–71. https://doi.org/10.1016/j.bios.2018.11.043.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Q, Wan K, Shang Y, Wang ZG, Zhang Y, Dai L, Wang C, Wang H, Shi X, Liu D, Ding B. Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Nat Mater. 2021;20(3):395–402. https://doi.org/10.1038/s41563-020-00856-6.

    Article  CAS  PubMed  Google Scholar 

  33. Xu J, Yuan Y, Zhang R, Song Y, Sui T, Wang J, Wang C, Chen Y, Guan S, Wang L. A deuterohemin peptide protects a transgenic Caenorhabditis elegans model of Alzheimerʼs disease by inhibiting Abeta1-42 aggregation. Bioorg Chem. 2019;82:332–9. https://doi.org/10.1016/j.bioorg.2018.10.072.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C, Chen C, Zhao D, Kang G, Liu F, Yang F, Lu Y, Sun J. Multienzyme cascades based on highly efficient metal-nitrogen-carbon nanozymes for construction of versatile bioassays. Anal Chem. 2022;94(8):3485–93. https://doi.org/10.1021/acs.analchem.1c04018.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Wen X, Kong J. Recent progress on uric acid detection: a review. Crit Rev Anal Chem. 2020;50(4):359–75. https://doi.org/10.1080/10408347.2019.1637711.

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Yao Q, Tang X, Zhong H, Qiu P, Wang X. A highly selective and sensitive colorimetric detection of uric acid in human serum based on MoS2-catalyzed oxidation TMB. Anal Bioanal Chem. 2019;411(4):943–52. https://doi.org/10.1007/s00216-018-1524-6.

    Article  CAS  PubMed  Google Scholar 

  37. Cai N, Tan L, Li Y, Xia T, Hu T, Su X. Biosensing platform for the detection of uric acid based on graphene quantum dots and G-quadruplex/hemin DNAzyme. Anal Chim Acta. 2017;965:96–102. https://doi.org/10.1016/j.aca.2017.01.067.

    Article  CAS  PubMed  Google Scholar 

  38. Omar MN, Salleh AB, Lim HN, Ahmad TA. Electrochemical detection of uric acid via uricase-immobilized graphene oxide. Anal Biochem. 2016;509:135–41. https://doi.org/10.1016/j.ab.2016.06.030.

    Article  CAS  PubMed  Google Scholar 

  39. Pan Y, Yang Y, Pang Y, Shi Y, Long Y, Zheng H. Enhancing the peroxidase-like activity of ficin via heme binding and colorimetric detection for uric acid. Talanta. 2018;185:433–8. https://doi.org/10.1016/j.talanta.2018.04.005.

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Li F, Cai Z, Liu K, Li J, Zhang B, He J. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout. Anal Bioanal Chem. 2018;410(10):2647–55. https://doi.org/10.1007/s00216-018-0939-4.

    Article  CAS  PubMed  Google Scholar 

  41. Wang XY, Zhu GB, Cao WD, Liu ZJ, Pan CG, Hu WJ, Zhao WY, Sun JF. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H2O2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta. 2019;191:46–53. https://doi.org/10.1016/j.talanta.2018.08.015.

    Article  CAS  PubMed  Google Scholar 

  42. Nishan U, Ullah W, Muhammad N, Asad M, Afridi S, Khan M, Shah M, Khan N, Rahim A. Development of a nonenzymatic colorimetric sensor for the detection of uric acid based on ionic liquid-mediated nickel nanostructures. ACS Omega. 2022;7(30):26983–91. https://doi.org/10.1021/acsomega.2c04070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu M, He Y, Zhou J, Ge Y, Zhou J, Song G. A “naked-eye” colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta. 2020;1103:134–42. https://doi.org/10.1016/j.aca.2019.12.069.

    Article  CAS  PubMed  Google Scholar 

  44. Dewangan L, Korram J, Karbhal I, Nagwanshi R, Jena VK, Satnami ML. A colorimetric nanoprobe based on enzyme-immobilized silver nanoparticles for the efficient detection of cholesterol. RSC Adv. 2019;9(72):42085–95. https://doi.org/10.1039/c9ra08328f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chung M, Jang YJ, Kim MI. Convenient colorimetric detection of cholesterol using multi-enzyme co-incorporated organic-inorganic hybrid nanoflowers. J Nanosci Nanotechnol. 2018;18(9):6555–61. https://doi.org/10.1166/jnn.2018.15697.

    Article  CAS  PubMed  Google Scholar 

  46. Hong C, Zhang X, Wu C, Chen Q, Yang H, Yang D, Huang Z, Cai R, Tan W. On-site colorimetric detection of cholesterol based on polypyrrole nanoparticles. ACS Appl Mater Interfaces. 2020;12(49):54426–32. https://doi.org/10.1021/acsami.0c15900.

    Article  CAS  PubMed  Google Scholar 

  47. Wu Q, He L, Jiang ZW, Li Y, Cao ZM, Huang CZ, Li YF. CuO nanoparticles derived from metal-organic gel with excellent electrocatalytic and peroxidase-mimicking activities for glucose and cholesterol detection. Biosens Bioelectron. 2019;145:111704. https://doi.org/10.1016/j.bios.2019.111704.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao L, Wu Z, Liu G, Lu H, Gao Y, Liu F, Wang C, Cui J, Lu G. High-activity Mo, S co-doped carbon quantum dot nanozyme-based cascade colorimetric biosensor for sensitive detection of cholesterol. J Mater Chem B. 2019;7(44):7042–51. https://doi.org/10.1039/c9tb01731c.

    Article  CAS  PubMed  Google Scholar 

  49. Chang HC, Ho JA. Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal Chem. 2015;87(20):10362–7. https://doi.org/10.1021/acs.analchem.5b02452.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Wang Y, Zhou Q, Chen X, Jiao W, Li G, Peng M, Liu X, He Y, Fan H. Precise regulation of enzyme-nanozyme cascade reaction kinetics by magnetic actuation toward efficient tumor therapy. ACS Appl Mater Interfaces. 2021;13:52395–405. https://doi.org/10.1021/acsami.1c15717.

    Article  CAS  Google Scholar 

  51. Dong H, Du W, Dong J, Che R, Kong F, Cheng W, Ma M, Gu N, Zhang Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat Commun. 2022;13(1):5365. https://doi.org/10.1038/s41467-022-33098-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21605114) and Tianjin Natural Science Foundation (Grant No. 17JCQNJC13300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Hua Wang or Lin-Yi Dong.

Ethics declarations

Ethical approval

The study (bc2022278) was approved by the institutional ethics committee of Tianjin Medical University Cancer Institute and Hospital (Tianjin, China), and carried out in according with the ethical guidelines of the Declaration of Helsinki for experiments involving humans. All healthy volunteers from our laboratory received a detailed description of the study and provided written informed consent to participate in the study before providing their serum samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23331 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, JY., Zhao, JM., Ren, MJ. et al. Bioconjugation of nanozyme and natural enzyme to enable a one-step cascade reaction for the detection of metabolites. Anal Bioanal Chem 415, 3385–3398 (2023). https://doi.org/10.1007/s00216-023-04720-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04720-9

Keywords

Navigation