Skip to main content

Advertisement

Log in

Scanning ion conductance microscopy reveals differential effect of PM2.5 exposure on A549 lung epithelial and SH-SY5Y neuroblastoma cell membranes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Numerous studies have linked a wide range of diseases including respiratory illnesses to harmful particulate matter (PM) emissions indoors and outdoors, such as incense PM and industrial PM. Because of their ability to penetrate the lower respiratory tract and the circulatory system, fine particles with diameters of 2.5 µm or less (PM2.5) are believed to be more hazardous than larger PMs. Despite the enormous number of studies focusing on the intracellular processes associated with PM2.5 exposure, there have been limited reports studying the biophysical properties of cell membranes, such as nanoscale morphological changes induced by PM2.5. Our study assesses the membrane topographical and structural effects of PM2.5 from incense PM2.5 exposure in real time on A549 lung carcinoma epithelial cells and SH-SY5Y neuroblastoma cells that had been fixed to preclude adaptive cell responses. The size distribution and mechanical properties of the PM2.5 sample were characterized with atomic force microscopy (AFM). Nanoscale morphological monitoring of the cell membranes utilizing scanning ion conductance microscopy (SICM) indicated statistically significant increasing membrane roughness at A549 cells at half an hour of exposure and visible damage at 4 h of exposure. In contrast, no significant increase in roughness was observed on SH-SY5Y cells after half an hour of PM2.5 exposure, although continued exposure to PM2.5 for up to 4 h affected an expansion of lesions already present before exposure commenced. These findings suggest that A549 cell membranes are more susceptible to structural damage by PM2.5 compared to SH-SY5Y cell membranes, corroborating more enhanced susceptibility of airway epithelial cells to exposure to PM2.5 than neuronal cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, Wang W, Hu M, Wang Y. Formation of urban fine particulate matter. Chem Rev. 2015;115:3803–55. https://doi.org/10.1021/acs.chemrev.5b00067.

    Article  CAS  PubMed  Google Scholar 

  2. Karagulian F, Belis CA, Dora CFC, Prüss-Ustün AM, Bonjour S, Adair-Rohani H, Amann M. Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ. 2015;120:475–83. https://doi.org/10.1016/j.atmosenv.2015.08.087.

    Article  CAS  Google Scholar 

  3. Ali MU, Liu G, Yousaf B, Ullah H, Abbas Q, Munir MAM. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ Geochem Health. 2019;41:1131–62. https://doi.org/10.1007/s10653-018-0203-z.

    Article  CAS  PubMed  Google Scholar 

  4. Li Z, Wen Q, Zhang R. Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): a review. Sci Total Environ. 2017;586:610–622. https://doi.org/10.1016/j.scitotenv.2017.02.029.

  5. Lowther SD, Jones KC, Wang X, Whyatt JD, Wild O, Booker D. Particulate matter measurement indoors: a review of metrics, sensors, needs, and applications. Environ Sci Technol. 2019;53:11644–56. https://doi.org/10.1021/acs.est.9b03425.

    Article  CAS  PubMed  Google Scholar 

  6. Glytsos T, Ondráček J, Džumbová L, Kopanakis I, Lazaridis M. Characterization of particulate matter concentrations during controlled indoor activities. Atmos Environ. 2010;44:1539–49. https://doi.org/10.1016/j.atmosenv.2010.01.009.

    Article  CAS  Google Scholar 

  7. Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016;8:E69–E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19.

  8. Weichenthal SA, Godri Pollitt K, Villeneuve PJ. PM2.5, oxidant defence and cardiorespiratory health: a review. Environ Heal. 2013;12:40. https://doi.org/10.1186/1476-069X-12-40.

  9. Hamanaka RB, Mutlu GM. Particulate matter air pollution: effects on the cardiovascular system. Front Endocrinol (Lausanne). 2018;9:1–15. https://doi.org/10.3389/fendo.2018.00680.

    Article  Google Scholar 

  10. Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular disease. Circulation. 2010;121:2331–78. https://doi.org/10.1161/CIR.0b013e3181dbece1.

    Article  CAS  PubMed  Google Scholar 

  11. Donaldson K. Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett. 1996;88:293–8. https://doi.org/10.1016/0378-4274(96)03752-6.

    Article  CAS  PubMed  Google Scholar 

  12. Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, Chen D, Ding W. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol Vitr. 2013;27:1762–1770. https://doi.org/10.1016/j.tiv.2013.05.004.

  13. Mehta M, Chen L-C, Gordon T, Rom W, Tang M. Particulate matter inhibits DNA repair and enhances mutagenesis. Mutat Res Toxicol Environ Mutagen. 2008;657:116–21. https://doi.org/10.1016/j.mrgentox.2008.08.015.

    Article  CAS  Google Scholar 

  14. Ferraz ERA, Rainho CR, Fernandes AS, Felzenszwalb I. Differential toxicity of an organic PM 2.5 extract to human lung cells cultured in three dimensions (3D) and monolayers. J Toxicol Environ Heal Part A. 2016;79:221–231. https://doi.org/10.1080/15287394.2016.1143902.

  15. Rhew SH, Kravchenko J, Lyerly HK. Exposure to low-dose ambient fine particulate matter PM2.5 and Alzheimer’s disease, non-Alzheimer’s dementia, and Parkinson’s disease in North Carolina. PLoS ONE. 2021;16:e0253253. https://doi.org/10.1371/journal.pone.0253253.

  16. Fu P, Guo X, Cheung FMH, Yung KKL. The association between PM2.5 exposure and neurological disorders: a systematic review and meta-analysis. Sci Total Environ. 2019;655:1240–1248. https://doi.org/10.1016/j.scitotenv.2018.11.218.

  17. Shi L, Wu X, Danesh Yazdi M, et al. Long-term effects of PM2·5 on neurological disorders in the American Medicare population: a longitudinal cohort study. Lancet Planet Heal. 2020;4:e557–65. https://doi.org/10.1016/S2542-5196(20)30227-8.

    Article  Google Scholar 

  18. Yuan X, Yang Y, Liu C, et al. Fine particulate matter triggers α-synuclein fibrillization and Parkinson-like neurodegeneration. Mov Disord. 2022;37:1817–30. https://doi.org/10.1002/mds.29181.

    Article  CAS  PubMed  Google Scholar 

  19. Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32:506–16. https://doi.org/10.1016/j.tins.2009.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shou Y, Huang Y, Zhu X, Liu C, Hu Y, Wang H. A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicol Environ Saf. 2019;174:344–352. https://doi.org/10.1016/j.ecoenv.2019.02.086.

  21. Xiong Q, Tian X, Xu C, Ma B, Liu W, Sun B, Ru Q, Shu X. PM2.5 exposure-induced ferroptosis in neuronal cells via inhibiting ERK/CREB pathway. Environ Toxicol. 2022;37:2201–2213. https://doi.org/10.1002/tox.23586.

  22. Wang Y, Zhang M, Li Z, Yue J, Xu M, Zhang Y, Yung KKL, Li R. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. Chemosphere. 2019;218:577–88. https://doi.org/10.1016/j.chemosphere.2018.11.149.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang M, Wang Y, Wong RMS, Yung KKL, Li R. Fine particulate matter induces endoplasmic reticulum stress-mediated apoptosis in human SH-SY5Y cells. Neurotoxicology. 2022;88:187–95. https://doi.org/10.1016/j.neuro.2021.11.012.

    Article  CAS  PubMed  Google Scholar 

  24. Lin C-H, Nicol CJB, Wan C, Chen S-J, Huang R-N, Chiang M-C. Exposure to PM2.5 induces neurotoxicity, mitochondrial dysfunction, oxidative stress and inflammation in human SH-SY5Y neuronal cells. Neurotoxicology. 2022;88:25–35. https://doi.org/10.1016/j.neuro.2021.10.009.

  25. Li Z, Tian F, Ban H, Xia S, Cheng L, Ren X, Lyu Y, Zheng J. Energy metabolism disorders and oxidative stress in the SH-SY5Y cells following PM2.5 air pollution exposure. Toxicol Lett. 2022;369:25–33. https://doi.org/10.1016/j.toxlet.2022.08.008.

  26. Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ. Scanning ion conductance microscopy of living cells. Biophys J. 1997;73:653–8. https://doi.org/10.1016/S0006-3495(97)78100-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen C-C, Zhou Y, Baker L a. Scanning ion conductance microscopy. Annu Rev Anal Chem. 2012;5:207–228. https://doi.org/10.1146/annurev-anchem-062011-143203.

  28. Zhu C, Huang K, Siepser NP, Baker LA. Scanning ion conductance microscopy. Chem Rev. 2021;121:11726–68. https://doi.org/10.1021/acs.chemrev.0c00962.

    Article  CAS  PubMed  Google Scholar 

  29. Seifert J, Rheinlaender J, Novak P, Korchev YE, Schäffer TE. Comparison of atomic force microscopy and scanning ion conductance microscopy for live cell imaging. Langmuir. 2015;31:6807–13. https://doi.org/10.1021/acs.langmuir.5b01124.

    Article  CAS  PubMed  Google Scholar 

  30. Happel P, Thatenhorst D, Dietzel I. Scanning ion conductance microscopy for studying biological samples. Sensors. 2012;12:14983–5008. https://doi.org/10.3390/s121114983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rubfiaro AS, Tsegay PS, Lai Y, Cabello E, Shaver M, Hutcheson J, Liu Y, He J. Scanning ion conductance microscopy study reveals the disruption of the integrity of the human cell membrane structure by oxidative DNA damage. ACS Appl Bio Mater. 2021;4:1632–9. https://doi.org/10.1021/acsabm.0c01461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parres-Gold J, Chieng A, Wong SuS, Wang Y. Real-time characterization of cell membrane disruption by α-synuclein oligomers in live SH-SY5Y neuroblastoma cells. ACS Chem Neurosci. 2020;11:2528–34. https://doi.org/10.1021/acschemneuro.0c00309.

    Article  CAS  PubMed  Google Scholar 

  33. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors2. JNCI J Natl Cancer Inst. 1973;51:1417–23. https://doi.org/10.1093/jnci/51.5.1417.

    Article  CAS  PubMed  Google Scholar 

  34. Carterson AJ, Höner zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, Buchanan KL, Nickerson CA, Schurr MJ. A549 Lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for pseudomonas aeruginosa pathogenesis. Infect Immun. 2005;73:1129–1140. https://doi.org/10.1128/IAI.73.2.1129-1140.2005.

  35. Gualtieri M, Mantecca P, Corvaja V, Longhin E, Perrone MG, Bolzacchini E, Camatini M. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549). Toxicol Lett. 2009;188:52–62. https://doi.org/10.1016/j.toxlet.2009.03.003.

    Article  CAS  PubMed  Google Scholar 

  36. Tang M, Wang Y, Tang D, Xiu P, Yang Z, Chen Y, Wang H. Influence of the PM 2.5 water-soluble compound on the biophysical properties of A549 cells. Langmuir. 2021;37:4042–4048. https://doi.org/10.1021/acs.langmuir.1c00522.

  37. Chen Y, Luo XS, Zhao Z, Chen Q, Wu D, Sun X, Wu L, Jin L. Summer–winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. Ecotoxicol Environ Saf. 2018;165:505–509. https://doi.org/10.1016/j.ecoenv.2018.09.034.

  38. Soca-Chafre G, Avila-Vásquez H, Rueda-Romero C, Huerta-García E, Márquez-Ramírez SG, Ramos-Godinez P, López-Marure R, Alfaro-Moreno E, Montiel-Dávalos A. Airborne particulate matter upregulates expression of early and late adhesion molecules and their receptors in a lung adenocarcinoma cell line. Environ Res. 2021;198:111242. https://doi.org/10.1016/j.envres.2021.111242.

  39. Fusco G, Chen SW, Williamson PTF, et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science (80- ). 2017;358:1440–1443. https://doi.org/10.1126/science.aan6160.

  40. Xicoy H, Wieringa B, Martens GJM. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener. 2017;12:10. https://doi.org/10.1186/s13024-017-0149-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferraro SA, Astort F, Yakisich JS, Tasat DR. Particulate matter cytotoxicity in cultured SH-SY5Y cells is modulated by simvastatin: toxicological assessment for oxidative damage. Neurotoxicology. 2016;53:108–14. https://doi.org/10.1016/j.neuro.2016.01.003.

    Article  CAS  PubMed  Google Scholar 

  42. Hagemann P, Gesper A, Happel P. Correlative stimulated emission depletion and scanning ion conductance microscopy. ACS Nano. 2018;12:5807–15. https://doi.org/10.1021/acsnano.8b01731.

    Article  CAS  PubMed  Google Scholar 

  43. Nakajima M, Mizutani Y, Iwata F, Ushiki T. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues. Semin Cell Dev Biol. 2018;73:125–31. https://doi.org/10.1016/j.semcdb.2017.09.024.

    Article  PubMed  Google Scholar 

  44. Feng C, Flores M, Dhoj C, Garcia A, Belleca S, Abbas DA, Parres-Gold J, Anguiano A, Porter E, Wang Y. Observation of α-synuclein preformed fibrils interacting with SH-SY5Y neuroblastoma cell membranes using scanning ion conductance microscopy. ACS Chem Neurosci. 2022;13:3547–53. https://doi.org/10.1021/acschemneuro.2c00478.

    Article  CAS  PubMed  Google Scholar 

  45. Shi Y, Ji Y, Sun H, et al. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles. Sci Rep. 2015;5:11232. https://doi.org/10.1038/srep11232.

  46. Jiang R, Shen H, Piao Y-J. The morphometrical analysis on the ultrastructure of A549 cells. Rom J Morphol Embryol. 2010;51:663–7.

    PubMed  Google Scholar 

  47. Fehrenbach H, Schmiedl A, Wahlers T, Hirt SW, Brasch F, Riemann D, Richter J. Morphometric characterisation of the fine structure of human type II pneumocytes. Anat Rec. 1995;243:49–62. https://doi.org/10.1002/ar.1092430107.

    Article  CAS  PubMed  Google Scholar 

  48. Fischer RS. Move your microvilli. J Cell Biol. 2014;207:9–11. https://doi.org/10.1083/jcb.201409059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Antonio PD, Lasalvia M, Perna G, Capozzi V. Scale-independent roughness value of cell membranes studied by means of AFM technique. Biochim Biophys Acta Biomembr. 2012;1818:3141–3148. https://doi.org/10.1016/j.bbamem.2012.08.001.

  50. Fang Y, Iu CYY, Lui CNP, Zou Y, Fung CKM, Li HW, Xi N, Yung KKL, Lai KWC. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration. Sci Rep. 2015;4:7074. https://doi.org/10.1038/srep07074.

    Article  Google Scholar 

  51. Liu L, Zhou Q, Yang X, Li G, Zhang J, Zhou X, Jiang W. Cytotoxicity of the soluble and insoluble fractions of atmospheric fine particulate matter. J Environ Sci. 2020;91:105–16. https://doi.org/10.1016/j.jes.2020.01.012.

    Article  CAS  Google Scholar 

  52. Wong SuS, Chieng A, Parres-Gold J, Chang M, Wang Y. Real-time determination of aggregated alpha-synuclein induced membrane disruption at neuroblastoma cells using scanning ion conductance microscopy. Faraday Discuss. 2018;210:131–43. https://doi.org/10.1039/C8FD00059J.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R15 NS120157 for YW. AG acknowledges the financial support from NSF CHE 2045839. MB acknowledges the financial support from NSF PREM DMR-1523588. CT and EP acknowledge the financial support from NIH R25 GM061331, and DA and EP acknowledge support from the 2022 CSUPERB Faculty Graduate Student Collaboration Award. The authors appreciate the facility support from NSF HRD-1547723.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixian Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3167 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhoj, C., Garcia, A., Manasyan, A. et al. Scanning ion conductance microscopy reveals differential effect of PM2.5 exposure on A549 lung epithelial and SH-SY5Y neuroblastoma cell membranes. Anal Bioanal Chem 415, 4557–4567 (2023). https://doi.org/10.1007/s00216-023-04690-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04690-y

Keywords

Navigation