Skip to main content
Log in

Understanding of protomers/deprotomers by combining mass spectrometry and computation

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Multifunctional compounds may form different prototropic isomers under different conditions, which are known as protomers/deprotomers. In biological systems, these protomer/deprotomer isomers affect the interaction modes and conformational landscape between compounds and enzymes and thus present different biological activities. Study on protomers/deprotomers is essentially the study on the acidity/basicity of each intramolecular functional group and its effect on molecular structure. In recent years, the combination of mass spectrometry (MS) and computational chemistry has been proven to be a powerful and effective means to study prototropic isomers. MS-based technologies are developed to discriminate and characterize protomers/deprotomers to provide structural information and monitor transformations, showing great superiority than other experimental methods. Computational chemistry is used to predict the thermodynamic stability of protomers/deprotomers, provide the simulated MS/MS spectra, infrared spectra, and calculate collision cross-section values. By comparing the theoretical data with the corresponding experimental results, the researchers can not only determine the protomer/deprotomer structure, but also investigate the structure–activity relationship in a given system. This review covers various MS methods and theoretical calculations and their devotion to isomer discrimination, structure identification, conformational transformation, and phase transition investigation of protomers/deprotomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pollack SK, Devlin JL, Summerhays KD, Taft RW, Hehre WJ. The site of protonation in Aniline. J Am Chem Soc. 1977;99(14):4583–4.

    CAS  Google Scholar 

  2. Karpas Z, Berant Z, Stimac RM. An ion mobility spectrometry/mass spectrometry (IMS/MS) study of the site of protonation in anilines. Struct Chem. 1990;1(2):201–4.

    CAS  Google Scholar 

  3. Harrison AG, Tu YP. Site of protonation of N-alkylanilines. Int J Mass Spectrom. 2000;195–196:33–43.

    Google Scholar 

  4. Lalli PM, Iglesias BA, Toma HE, De Sa GF, Daroda RJ, Silva Filho JC, et al. Protomers: formation, separation and characterization via travelling wave ion mobility mass spectrometry. J Mass Spectrom. 2012;47(6):712–9.

    CAS  PubMed  Google Scholar 

  5. Kovačević B, Schorr P, Qi Y, Volmer DA. Decay mechanisms of protonated 4-quinolone antibiotics after electrospray ionization and ion activation. J Am Soc Mass Spectrom. 2014;25(11):1974–86.

    PubMed  Google Scholar 

  6. Bull JN, Coughlan NJA, Bieske EJ. Protomer-specific photochemistry investigated using ion mobility mass spectrometry. J Phys Chem A. 2017;121(32):6021–7.

    CAS  PubMed  Google Scholar 

  7. Erabelli R. Gas - phase protomers of p - (dimethylamino) chalcone investigated by travelling - wave ion mobility mass spectrometry (TWIMS). J Mass Spectrom. 2018;53(10):954–62.

    CAS  PubMed  Google Scholar 

  8. Sheldrick A, Müller D, Günther A, Nieto P, Dopfer O. Optical spectroscopy of isolated flavins: photodissociation of protonated lumichrome. Phys Chem Chem Phys. 2018;20(11):7407–14.

    CAS  PubMed  Google Scholar 

  9. Attygalle AB, Xia H, Pavlov J. Influence of ionization source conditions on the gas-phase protomer distribution of anilinium and related cations. J Am Soc Mass Spectrom. 2017;28(8):1575–86.

    CAS  PubMed  Google Scholar 

  10. Seo J, Warnke S, Gewinner S, Schöllkopf W, Bowers MT, Pagel K, et al. The impact of environment and resonance effects on the site of protonation of aminobenzoic acid derivatives. Phys Chem Chem Phys. 2016;18(36):25474–82.

    CAS  PubMed  Google Scholar 

  11. Almasian M, Grzetic J, Van Maurik J, Steill JD, Berden G, Ingemann S, et al. Non-equilibrium isomer distribution of the gas-phase photoactive yellow protein chromophore. J Phys Chem Lett. 2012;3(16):2259–63.

    CAS  PubMed  Google Scholar 

  12. Santis GD, Takeda N, Hirata K, Tsuruta K, Ishiuchi S, Xantheas SS, et al. Structure of gas phase monohydrated nicotine: implications for nicotine’s native structure in the acetylcholine binding protein. J Am Chem Soc. 2022;144(37):16698–702.

    CAS  PubMed  Google Scholar 

  13. Warnke S, Seo J, Boschmans J, Sobott F, Scrivens JH, Bleiholder C, et al. Protomers of benzocaine: solvent and permittivity dependence. J Am Chem Soc. 2015;137(12):4236–42.

    CAS  PubMed  Google Scholar 

  14. Graton J, Berthelot M, Gal JF, Girard S, Laurence C, Lebreton J, et al. Site of protonation of nicotine and nornicotine in the gas phase: pyridine or pyrrolidine nitrogen? J Am Chem Soc. 2002;124(35):10552–62.

    CAS  PubMed  Google Scholar 

  15. Takeda N, Hirata K, Tsuruta K, Santis GD, Xantheas SS, Ishiuchi SI, et al. Gas phase protonated nicotine is a mixture of pyridine- and pyrrolidine-protonated conformers: implications for its native structure in the nicotinic acetylcholine receptor. Phys Chem Chem Phys. 2021;24(10):5786–93.

    Google Scholar 

  16. Hofmann J, Hahm HS, Seeberger PH, Pagel K. Identification of carbohydrate anomers using ion mobility-mass spectrometry. Nature. 2015;526(7572):241–4.

    CAS  PubMed  Google Scholar 

  17. Dongré AR, Jones JL, Somogyi Á, Wysocki VH. Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton model. J Am Chem Soc. 1996;118(35):8365–74.

    Google Scholar 

  18. Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem. 2014;6(4):281–94.

    CAS  PubMed  Google Scholar 

  19. Wu Q, Wang JY, Han DQ, Yao ZP. Recent advances in differentiation of isomers by ion mobility mass spectrometry. TrAC Trends Anal Chem. 2020;124: 115801.

    CAS  Google Scholar 

  20. Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: challenges and opportunities for metabolomics and lipidomics. Mass Spectrom Rev. 2021;41(5):722–65.

    PubMed  Google Scholar 

  21. Struwe WB, Benesch JL, Harvey DJ, Pagel K. Collision cross sections of high-mannose N-glycans in commonly observed adduct states-identification of gas-phase conformers unique to [M - H]- ions. Analyst. 2015;140(20):6799–803.

    CAS  PubMed  Google Scholar 

  22. Boyd R, Somogyi Á. The mobile proton hypothesis in fragmentation of protonated peptides: a perspective. J Am Soc Mass Spectrom. 2010;21(8):1275–8.

    CAS  PubMed  Google Scholar 

  23. McLafferty FW. A century of progress in molecular mass spectrometry. Annu Rev Anal Chem. 2011;4:1–22.

    CAS  Google Scholar 

  24. Zheng F, Chung W, Palmisano E, Dong D, Shi Q, Xu Z, et al. Molecular characterization of polar heteroatom species in oilsands bitumen-derived vacuum residue fractions by Fourier transform ion cyclotron resonance mass spectrometry. Pet Sci. 2019;16(5):1196–207.

    CAS  Google Scholar 

  25. Dong C, Jia C, Zheng S, Zhang H, Fu D, Xu L, et al. Molecular composition analysis using ultra-high resolution mass spectrometry for lubricating oil process optimization. Pet Sci Bull. 2019;4:430–9.

    Google Scholar 

  26. Tian Z, Kass SR. Gas-phase versus liquid-phase structures by electrospray ionization mass spectrometry. Angew Chemie. 2009;121(7):1347–9.

    Google Scholar 

  27. Lapthorn C, Dines TJ, Chowdhry BZ, Perkins GL, Pullen FS. Can ion mobility mass spectrometry and density functional theory help elucidate protonation sites in ‘small’ molecules? Rapid Commun Mass Spectrom. 2013;27(21):2399–410.

    CAS  PubMed  Google Scholar 

  28. Campbell JL, Le Blanc JCY, Schneider BB. Probing electrospray ionization dynamics using differential mobility spectrometry: the curious case of 4-aminobenzoic acid. Anal Chem. 2012;84(18):7857–64.

    CAS  PubMed  Google Scholar 

  29. Polfer NC, Oomens J, Suhai S, Paizs B. Infrared spectroscopy and theoretical studies on gas-phase protonated Leu-enkephalin and its fragments: direct experimental evidence for the mobile proton. J Am Chem Soc. 2007;129(18):5887–97.

    CAS  PubMed  Google Scholar 

  30. Lagutschenkov A, Langer J, Berden G, Oomens J, Dopfer O. Infrared spectra of the protonated neurotransmitter histamine: competition between imidazolium and ammonium isomers in the gas phase. Phys Chem Chem Phys. 2011;13(34):15644–56.

    CAS  PubMed  Google Scholar 

  31. Langer J, Günther A, Seidenbecher S, Berden G, Oomens J, Dopfer O. Probing protonation sites of isolated flavins using IR spectroscopy: from lumichrome to the cofactor flavin mononucleotide. ChemPhysChem. 2014;15(12):2550–62.

    CAS  PubMed  Google Scholar 

  32. Bouchet A, Schütz M, Chiavarino B, Crestoni ME, Fornarini S, Dopfer O. IR spectrum of the protonated neurotransmitter 2-phenylethylamine: dispersion and anharmonicity of the NH3+-π interaction. Phys Chem Chem Phys. 2015;17(39):25742–54.

    CAS  PubMed  Google Scholar 

  33. Schütz M, Bouchet A, Chiavarino B, Crestoni ME, Fornarini S, Dopfer O. Effects of aromatic fluorine substitution on protonated neurotransmitters: the case of 2-phenylethylamine. Chem A Eur J. 2016;22(24):8124–36.

    Google Scholar 

  34. Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. J Mass Spectrom. 2004;39(10):1091–112.

    CAS  PubMed  Google Scholar 

  35. Brümmer M, Kaposta C, Santambrogio G, Asmis KR. Formation and photodepletion of cluster ion-messenger atom complexes in a cold ion trap: Infrared spectroscopy of VO+, VO2+, and VO3+. J Chem Phys. 2003;119(24):12700–3.

    Google Scholar 

  36. Goebbert DJ, Wende T, Bergmann R, Meijer G, Asmis KR. Messenger-tagging electrosprayed ions: vibrational spectroscopy of suberate dianions. J Phys Chem A. 2009;113(20):5874–80.

    CAS  PubMed  Google Scholar 

  37. Jiang L, Wende T, Bergmann R, Meijer G, Asmis KR. Gas-phase vibrational spectroscopy of microhydrated magnesium nitrate ions [MgNO3(H2O), 1–4]+. J Am Chem Soc. 2010;132(21):7398–404.

    CAS  PubMed  Google Scholar 

  38. Martens J, van Outersterp RE, Vreeken RJ, Cuyckens F, Coene KLM, Engelke UF, et al. Infrared ion spectroscopy: new opportunities for small-molecule identification in mass spectrometry - a tutorial perspective. Anal Chim Acta. 2020;1093:1–15.

    CAS  PubMed  Google Scholar 

  39. Kamrath MZ, Garand E, Jordan PA, Leavitt CM, Wolk AB, Van Stipdonk MJ, et al. Vibrational characterization of simple peptides using cryogenic infrared photodissociation of H2-tagged, mass-selected ions. J Am Chem Soc. 2011;133(16):6440–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Khuu T, Yang N, Johnson MA. Vibrational spectroscopy of the cryogenically cooled O- and N-protomers of 4-aminobenzoic acid: tag effects, isotopic labels, and identification of the E, Z isomer of the O-protomer. Int J Mass Spectrom. 2020;457: 116427.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schröder D, Buděšínský M, Roithová J. Deprotonation of p-hydroxybenzoic acid: does electrospray ionization sample solution or gas-phase structures? J Am Chem Soc. 2012;134(38):15897–905.

    PubMed  Google Scholar 

  42. Dodds JN, Baker ES. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J Am Soc Mass Spectrom. 2019;30(11):2185–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JLP, Bleiholder C, et al. Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom Rev. 2019;38(3):291–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Kurulugama RT, et al. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem. 2014;86(4):2107–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jurneczko E, Barran PE. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst. 2011;136(1):20–8.

    CAS  PubMed  Google Scholar 

  46. Groessl M, Graf S, Knochenmuss R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst. 2015;140(20):6904–11.

    CAS  PubMed  Google Scholar 

  47. Allen SJ, Bush MF. Radio-frequency (rf) confinement in ion mobility spectrometry: apparent mobilities and effective temperatures. J Am Soc Mass Spectrom. 2016;27(12):2054–63.

    CAS  PubMed  Google Scholar 

  48. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, et al. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom. 2007;261(1):1–12.

    CAS  Google Scholar 

  49. Giles K, Williams JP, Campuzano I. Enhancements in travelling wave ion mobility resolution. Rapid Commun Mass Spectrom. 2011;25(11):1559–66.

    CAS  PubMed  Google Scholar 

  50. Garimella SVB, Ibrahim YM, Webb IK, Ipsen AB, Chen TC, Tolmachev AV, et al. Ion manipulations in structures for lossless ion manipulations (SLIM): Computational evaluation of a 90° turn and a switch. Analyst. 2015;140(20):6845–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ibrahim YM, Hamid AM, Deng L, Garimella SVB, Webb IK, Baker ES, et al. New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst. 2017;142(7):1010–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Garimella SVB, Nagy G, Ibrahim YM, Smith RD. Opening new paths for biological applications of ion mobility - mass spectrometry using structures for lossless ion manipulations. TrAC Trends Anal Chem. 2019;116:300–7.

    CAS  Google Scholar 

  53. Giles K, Ujma J, Wildgoose J, Pringle S, Richardson K, Langridge D, et al. A cyclic ion mobility-mass spectrometry system. Anal Chem. 2019;91(13):8564–73.

    CAS  PubMed  Google Scholar 

  54. McCullagh M, Giles K, Richardson K, Stead S, Palmer M. Investigations into the performance of travelling wave enabled conventional and cyclic ion mobility systems to characterise protomers of fluoroquinolone antibiotic residues. Rapid Commun Mass Spectrom. 2019;33:11–21.

    CAS  PubMed  Google Scholar 

  55. McCullagh M, Goscinny S, Palmer M, Ujma J. Investigations into pesticide charge site isomers using conventional IM and cIM systems. Talanta. 2021;234: 122604.

    CAS  PubMed  Google Scholar 

  56. Michelmann K, Silveira JA, Ridgeway ME, Park MA. Fundamentals of trapped ion mobility spectrometry. J Am Soc Mass Spectrom. 2014;26(1):14–24.

    PubMed  Google Scholar 

  57. Hernandez DR, DeBord JD, Ridgeway ME, Kaplan DA, Park MA, Fernandez-Lima F. Ion dynamics in a trapped ion mobility spectrometer. Analyst. 2014;139(8):1913–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ridgeway ME, Lubeck M, Jordens J, Mann M, Park MA. Trapped ion mobility spectrometry: a short review. Int J Mass Spectrom. 2018;425:22–35.

    CAS  Google Scholar 

  59. Silveira JA, Ridgeway ME, Park MA. High resolution trapped ion mobility spectrometry of peptides. Anal Chem. 2014;86(12):5624–7.

    CAS  PubMed  Google Scholar 

  60. Wang K, Qiu R, Zhang X, Gillig KJ, Sun W. U-shaped mobility analyzer: a compact and high-resolution counter-flow ion mobility spectrometer. Anal Chem. 2020;92(12):8356–63.

    CAS  PubMed  Google Scholar 

  61. Kolakowski BM, Mester Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst. 2007;132(9):842–64.

    CAS  PubMed  Google Scholar 

  62. Guevremont R. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr A. 2004;1058(1–2):3–19.

    CAS  PubMed  Google Scholar 

  63. Ieritano C, Yves Le Blanc JC, Schneider BB, Bissonnette JR, Haack A, Hopkins WS. Protonation-induced chirality drives separation by differential ion mobility spectrometry. Angew Chemie Int Ed. 2022;61(9): e202116794.

  64. Li J, Li L, Gao W, Shi S, Yu J, Tang K. Two-dimensional FAIMS-IMS characterization of peptide conformers with resolution exceeding 1000. Anal Chem. 2022; 94(16): 6363–6370.

  65. Servage KA, Silveira JA, Fort KL, Russell DH. Cryogenic ion mobility-mass spectrometry: tracking ion structure from solution to the gas phase. Acc Chem Res. 2016;49(7):1421–8.

    CAS  PubMed  Google Scholar 

  66. Kamrath MZ, Rizzo TR. Combining ion mobility and cryogenic spectroscopy for structural and analytical studies of biomolecular ions. Acc Chem Res. 2018;51(6):1487–95.

    CAS  PubMed  Google Scholar 

  67. Coughlan NJA, Adamson BD, Catani KJ, Wille U, Bieske EJ. Ion mobility unlocks the photofragmentation mechanism of retinal protonated Schiff base. J Phys Chem Lett. 2014;5:3195–9.

    CAS  PubMed  Google Scholar 

  68. Adamson BD, Coughlan NJA, Markworth PB, Continetti RE, Bieske EJ. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions. Rev Sci Instrum. 2014;85(12): 123109.

    CAS  PubMed  Google Scholar 

  69. Marlton SJP, Trevitt AJ. The combination of laser photodissociation, action spectroscopy, and mass spectrometry to identify and separate isomers. Chem Commun. 2022;58(68):9451–67.

    CAS  Google Scholar 

  70. Pracht P, Bauer CA, Grimme S. Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites. J Comput Chem. 2017;38(30):2618–31.

    CAS  PubMed  Google Scholar 

  71. Watson MA, Yu HS, Bochevarov AD. Generation of tautomers using micro-p Ka’s. J Chem Inf Model. 2019;59(6):2672–89.

    CAS  PubMed  Google Scholar 

  72. Burke K. Perspective on density functional theory. J Chem Phys. 2012;136(15): 151901.

    Google Scholar 

  73. Cohen AJ, Mori-Sánchez P, Yang W. Challenges for density functional theory. Chem Rev. 2012;112(1):289–320.

    CAS  PubMed  Google Scholar 

  74. Grimme S, Bannwarth C, Shushkov P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J Chem Theory Comput. 2017;13(5):1989–2009.

    CAS  PubMed  Google Scholar 

  75. Bannwarth C, Ehlert S, Grimme S. GFN2-xTB - an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J Chem Theory Comput. 2019;15(3):1652–71.

    CAS  PubMed  Google Scholar 

  76. Pracht P, Bohle F, Grimme S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys Chem Chem Phys. 2020;22(14):7169–92.

    CAS  PubMed  Google Scholar 

  77. Grimme S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J Chem Theory Comput. 2019;15(5):2847–62.

    CAS  PubMed  Google Scholar 

  78. Marlton SJP, McKinnon BI, Ucur B, Bezzina JP, Blanksby SJ, Trevitt AJ. Discrimination between protonation isomers of quinazoline by ion mobility and UV-photodissociation action spectroscopy. J Phys Chem Lett. 2020;11(10):4226–31.

    CAS  PubMed  Google Scholar 

  79. Sepman H, Tshepelevitsh S, Hupatz H, Kruve A. Protomer formation can aid the structural identification of caffeine metabolites. Anal Chem. 2022;94(30):10601–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Grimme S. Towards first principles calculation of electron impact mass spectra of molecules. Angew Chem Int Ed. 2013;52(24):6306–12.

    CAS  Google Scholar 

  81. Koopman J, Grimme S. From QCEIMS to QCxMS: a tool to routinely calculate CID mass spectra using molecular dynamics. J Am Soc Mass Spectrom. 2021;32(7):1735–51.

    CAS  PubMed  Google Scholar 

  82. Koopman J, Grimme S. Calculation of mass spectra with the QCxMS method for negatively and multiply charged molecules. J Am Soc Mass Spectrom. 2022. https://doi.org/10.1021/jasms.2c00209.

    Article  PubMed  Google Scholar 

  83. Borges RM, Colby SM, Das S, Edison AS, Fiehn O, Kind T, et al. Quantum chemistry calculations for metabolomics. Chem Rev. 2021;121(10):5633–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF. Structural information from ion mobility measurements: effects of the long-range potential. J Phys Chem. 1996;100(40):16082–6.

    CAS  Google Scholar 

  85. Paizs B. A divide-and-conquer approach to compute collision cross sections in the projection approximation method. Int J Mass Spectrom. 2015;378:360–3.

    CAS  Google Scholar 

  86. Bleiholder C, Wyttenbach T, Bowers MT. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (I). Method. Int J Mass Spectrom. 2011;308(1):1–10.

  87. Bleiholder C. A local collision probability approximation for predicting momentum transfer cross sections. Analyst. 2015;140(20):6804–13.

    CAS  PubMed  Google Scholar 

  88. Shvartsburg AA, Jarrold MF. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett. 1996;261(1–2):86–91.

    CAS  Google Scholar 

  89. Larriba C, Hogan CJ. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation. J Comput Phys. 2013;251:344–63.

    CAS  Google Scholar 

  90. Wu T, Derrick J, Nahin M, Chen X, Larriba-Andaluz C. Optimization of long range potential interaction parameters in ion mobility spectrometry. J Chem Phys. 2018;148(7).

  91. Campuzano I, Bush MF, Robinson CV, Beaumont C, Richardson K, Kim H, et al. Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal Chem. 2012;84(2):1026–33.

    CAS  PubMed  Google Scholar 

  92. Boschmans J, Jacobs S, Williams JP, Palmer M, Richardson K, Giles K, et al. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers. Analyst. 2016;141(13):4044–54.

    CAS  PubMed  Google Scholar 

  93. Zanotto L, Heerdt G, Souza PCT, Araujo G, Skaf MS. High performance collision cross section calculation-HPCCS. J Comput Chem. 2018;1675–1681.

  94. Lee JW, Davidson KL, Bush MF, Kim HI. Collision cross sections and ion structures: development of a general calculation method via high-quality ion mobility measurements and theoretical modeling. Analyst. 2017;142(22):4289–98.

    CAS  PubMed  Google Scholar 

  95. Lee JW, Lee HHL, Davidson KL, Bush MF, Kim HI. Structural characterization of small molecular ions by ion mobility mass spectrometry in nitrogen drift gas: improving the accuracy of trajectory method calculations. Analyst. 2018;143(8):1786–96.

    CAS  PubMed  Google Scholar 

  96. Ieritano C, Crouse J, Campbell JL, Hopkins WS. A parallelized molecular collision cross section package with optimized accuracy and efficiency. Analyst. 2019;144(5):1660–70.

    CAS  PubMed  Google Scholar 

  97. Ieritano C, Hopkins WS. Assessing collision cross section calculations using MobCal-MPI with a variety of commonly used computational methods. Mater Today Commun. 2021;27: 102226.

    CAS  Google Scholar 

  98. Ewing SA, Donor MT, Wilson JW, Prell JS. Collidoscope: an improved tool for computing collisional cross-sections with the trajectory method. J Am Soc Mass Spectrom. 2017;28(4):587–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Larriba C, Hogan CJ. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models. J Phys Chem A. 2013;117(19):3887–901.

    CAS  PubMed  Google Scholar 

  100. Coots J, Gandhi V, Onakoya T, Chen X, Larriba-Andaluz C. A parallelized tool to calculate the electrical mobility of charged aerosol nanoparticles and ions in the gas phase. J Aerosol Sci. 2020;147: 105570.

    CAS  Google Scholar 

  101. Harrilal CP, Gandhi VD, Nagy G, Chen X, Buchanan MG, Wojcik R, et al. Measurement and theory of gas-phase ion mobility shifts resulting from isotopomer mass distribution changes. Anal Chem. 2021;93(45):14966–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rolland AD, Prell JS. Computational insights into compaction of gas-phase protein and protein complex ions in native ion mobility-mass spectrometry. TrAC Trends Anal Chem. 2019;116:282–91.

    CAS  Google Scholar 

  103. Larriba-Andaluz C, Prell JS. Fundamentals of ion mobility in the free molecular regime. Interlacing the past, present and future of ion mobility calculations. Int Rev Phys Chem. 2020;39(4):569–623.

  104. Prell JS. Modelling collisional cross sections. 1st ed. Elsevier B.V.

  105. Karplus M, McCanmmon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002;9(9):646–52.

    CAS  PubMed  Google Scholar 

  106. Karplus M, Petsko GA. Molecular dynamics simulations in biology. Nature. 1990;347(6294):631–9.

    CAS  PubMed  Google Scholar 

  107. Batista PR, Penna TC, Ducati LC, Correra TC. p-Aminobenzoic acid protonation dynamics in an evaporating droplet by ab initio molecular dynamics. Phys Chem Chem Phys. 2021;23(35):19659–72.

    CAS  PubMed  Google Scholar 

  108. Konermann L. Molecular dynamics simulations on gas-phase proteins with mobile protons: inclusion of all-atom charge solvation. J Phys Chem B. 2017;121(34):8102–12.

    CAS  PubMed  Google Scholar 

  109. Popa V, Trecroce DA, McAllister RG, Konermann L. Collision-induced dissociation of electrosprayed protein complexes: an all-atom molecular dynamics model with mobile protons. J Phys Chem B. 2016;120(23):5114–24.

    CAS  PubMed  Google Scholar 

  110. Konermann L, Metwally H, McAllister RG, Popa V. How to run molecular dynamics simulations on electrospray droplets and gas phase proteins: basic guidelines and selected applications. Methods. 2018;144:104–12.

    CAS  PubMed  Google Scholar 

  111. Koné M, Illien B, Laurence C, Gal JF, Maria PC. Are nicotinoids protonated on the pyridine or the amino nitrogen in the gas phase? J Phys Org Chem. 2006;19(2):104–14.

    Google Scholar 

  112. Marlton SJP, McKinnon BI, Ucur B, Maccarone AT, Donald WA, Blanksby SJ, et al. Selecting and identifying gas-phase protonation isomers of nicotineH+ using combined laser, ion mobility and mass spectrometry techniques. Faraday Discuss. 2019;217:453–75.

    CAS  PubMed  Google Scholar 

  113. Tian Z, Kass SR. Does electrospray ionization produce gas-phase or liquid-phase structures? J Am Chem Soc. 2008;130(33):10842–3.

    CAS  PubMed  Google Scholar 

  114. Steill JD, Oomens J. Gas-phase deprotonation of p-hydroxybenzoic acid investigated by IR spectroscopy: Solution-phase structure is retained upon ESI. J Am Chem Soc. 2009;131(38):13570–1.

    CAS  PubMed  Google Scholar 

  115. Xia H, Attygalle AB. Effect of electrospray ionization source conditions on the tautomer distribution of deprotonated p-hydroxybenzoic acid in the gas phase. Anal Chem. 2016;88(11):6035–43.

    CAS  PubMed  Google Scholar 

  116. Silveira JA, Fort KL, Kim D, Servage KA, Pierson NA, Clemmer DE, et al. From solution to the gas phase: stepwise dehydration and kinetic trapping of substance p reveals the origin of peptide conformations. J Am Chem Soc. 2013;135:19147–53.

    CAS  PubMed  Google Scholar 

  117. Chang TM, Prell JS, Warrick ER, Williams ER. Wheres the charge? Protonation sites in gaseous ions change with hydration. J Am Chem Soc. 2012;134(38):15805–13.

    CAS  PubMed  Google Scholar 

  118. Joyce JR, Richards DS. Kinetic control of protonation in electrospray ionization. J Am Soc Mass Spectrom. 2011;22(2):360–8.

    CAS  PubMed  Google Scholar 

  119. Chang TM, Chakrabarty S, Williams ER. Hydration of gaseous m-aminobenzoic acid: ionic vs neutral hydrogen bonding and water bridges. J Am Chem Soc. 2014;136(29):10440–9.

    CAS  PubMed  Google Scholar 

  120. Hebert MJ, Russell DH. Tracking the structural evolution of 4-aminobenzoic acid in the transition from solution to the gas phase. J Phys Chem B. 2020;124(11):2081–7.

    CAS  PubMed  Google Scholar 

  121. Xia H, Attygalle AB. Transformation of the gas-phase favored O-protomer of p-aminobenzoic acid to its unfavored N-protomer by ion activation in the presence of water vapor: an ion-mobility mass spectrometry study. J Mass Spectrom. 2018;53(4):353–60.

    CAS  PubMed  Google Scholar 

  122. Zheng Z, Attygalle AB. Impact of ambient vapors present in an electrospray ionization source on gas-phase ion structures. J Am Soc Mass Spectrom. 2021;32(3):725–35.

    CAS  PubMed  Google Scholar 

  123. Ross DH, Xu L. Determination of drugs and drug metabolites by ion mobility-mass spectrometry: a review. Anal Chim Acta. 2021;1154: 338270.

    CAS  PubMed  Google Scholar 

  124. Corinti D, Chiavarino B, Spano M, Tintaru A, Fornarini S, Crestoni ME. Molecular basis for the remarkably different gas-phase behavior of deprotonated thyroid hormones triiodothyronine (T3) and reverse triiodothyronine (rT3): a clue for their discrimination? Anal Chem. 2021;93(44):14869–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Struwe WB, Baldauf C, Hofmann J, Rudd PM, Pagel K. Ion mobility separation of deprotonated oligosaccharide isomers-evidence for gas-phase charge migration. Chem Commun. 2016;52(83):12353–6.

    CAS  Google Scholar 

  126. Roman-Hubers AT, Cordova AC, Aly NA, McDonald TJ, Lloyd DT, Wright FA, et al. Data processing workflow to identify structurally related compounds in petroleum substances using ion mobility spectrometry-mass spectrometry. Energy Fuels. 2021;35(13):10529–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lettow M, Grabarics M, Mucha E, Thomas DA, Polewski Ł, Freyse J, et al. IR action spectroscopy of glycosaminoglycan oligosaccharides. Anal Bioanal Chem. 2020;412(3):533–7.

    CAS  PubMed  Google Scholar 

  128. McCann A, Kune C, Massonnet P, Far J, Ongena M, Eppe G, et al. Cyclic peptide protomer detection in the gas phase: impact on CCS measurement and fragmentation patterns. J Am Soc Mass Spectrom. 2022;33(5):851–8.

    CAS  PubMed  Google Scholar 

  129. Zhang JD, Donor MT, Rolland AD, Leeming MG, Wang H, Trevitt AJ, et al. Protonation isomers of highly charged protein ions can be separated in FAIMS-MS. Int J Mass Spectrom. 2020;457: 116425.

    CAS  Google Scholar 

  130. Mao Y, Woenckhaus J, Kolafa J, Ratner MA, Jarrold MF. Molecular dynamics simulations of the charge-induced unfolding and refolding of unsolvated cytochrome c. J Am Chem Soc. 1999;121(12):2712–21.

    CAS  Google Scholar 

  131. Laszlo KJ, Munger EB, Bush MF. Folding of protein ions in the gas phase after cation-to-anion proton-transfer reactions. J Am Chem Soc. 2016;138(30):9581–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sever AIM, Konermann L. Gas phase protein folding triggered by proton stripping generates inside-out structures: a molecular dynamics simulation study. J Phys Chem B. 2020;124(18):3667–77.

    CAS  PubMed  Google Scholar 

  133. Konermann L, Aliyari E, Lee JH. Mobile protons limit the stability of salt bridges in the gas phase: implications for the structures of electrosprayed protein ions. J Phys Chem B. 2021;125(15):3803–14.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (No. 2021YFA1501201) and the National Natural Science Foundation of China (No. 21874153). The authors acknowledge support from State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehua Han.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Habtegabir, S.G., Wang, H. et al. Understanding of protomers/deprotomers by combining mass spectrometry and computation. Anal Bioanal Chem 415, 3847–3862 (2023). https://doi.org/10.1007/s00216-023-04574-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04574-1

Keywords

Navigation