Skip to main content
Log in

Development of a dual-electrospray ionization source with in-line absorbance-based voltage control

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Emitter tip arrays for electrospray ionization have been used for a variety of MS sample introduction purposes, including detection of multiple sample eluent streams and improved accuracy through parallel infusion of an internal standard. User control is typically required for targeted application of high voltage to specific channels to maximize analyte signal and minimize other background signals. In this communication, an automated approach to applying electrospray voltage only when a detectable analyte is present is described. An in-line absorbance detector is used to identify the presence of an analyte in the fluidic path between the sample introduction valve and the mass spectrometer. A Raspberry Pi-controlled system is then used to apply high voltage to a downstream emitter tip at the MS inlet following a delay volume between the detectors. Demonstration of this technique on two parallel sample channels is reported, including a pulsed voltage application to maximize signal when analytes elute on each channel simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Wang Y, Lehmann R, Lu X, Zhao X, Xu G. Novel, fully automatic hydrophilic interaction/reversed-phase column-switching high-performance liquid chromatographic system for the complementary analysis of polar and apolar compounds in complex samples. J Chromatogr A. 2008;1204(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Wang J, Yao M, Zhao X, Fritsche J, Schmitt-Kopplin P, et al. Metabonomics study on the effects of the ginsenoside Rg3 in a β-cyclodextrin-based formulation on tumor-bearing rats by a fully automatic hydrophilic interaction/reversed-phase column-switching HPLC-ESI-MS approach. Anal Chem. 2008;80(12):4680–8.

    Article  CAS  PubMed  Google Scholar 

  3. Chalcraft KR, McCarry BE. Tandem LC columns for the simultaneous retention of polar and nonpolar molecules in comprehensive metabolomics analysis. J Sep Sci. 2013;36(21–22):3478–85.

    Article  CAS  PubMed  Google Scholar 

  4. Greco G, Grosse S, Letzel T. Serial coupling of reversed-phase and zwitterionic hydrophilic interaction LC/MS for the analysis of polar and nonpolar phenols in wine. J Sep Sci. 2013;36(8):1379–88.

    Article  CAS  PubMed  Google Scholar 

  5. Haggarty J, Oppermann M, Dalby MJ, Burchmore RJ, Cook K, Weidt S, et al. Serially coupling hydrophobic interaction and reversed-phase chromatography with simultaneous gradients provides greater coverage of the metabolome. Metabolomics. 2015;11(5):1465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klavins K, Drexler H, Hann S, Koellensperger G. Quantitative metabolite profiling utilizing parallel column analysis for simultaneous reversed-phase and hydrophilic interaction liquid chromatography separations combined with tandem mass spectrometry. Anal Chem. 2014;86(9):4145–50.

    Article  CAS  PubMed  Google Scholar 

  7. Robles-Molina J, Gilbert-López B, García-Reyes JF, Molina-Díaz A. Simultaneous liquid chromatography/mass spectrometry determination of both polar and “multiresidue” pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach. J Chromatogr A. 2017;1517:108–16.

    Article  CAS  PubMed  Google Scholar 

  8. Rampler E, Schoeny H, Mitic BM, El Abiead Y, Schwaiger M, Koellensperger G. Simultaneous non-polar and polar lipid analysis by on-line combination of HILIC RP and high resolution MS. Analyst. 2018;143(5):1250–8.

    Article  CAS  PubMed  Google Scholar 

  9. Schwaiger M, Schoeny H, El Abiead Y, Hermann G, Rampler E, Koellensperger G. Merging metabolomics and lipidomics into one analytical run. Analyst. 2019;144(1):220–9.

    Article  CAS  Google Scholar 

  10. Byrdwell WC, Kotapati HK, Goldschmidt R, Jakubec P, Nováková L. Three-dimensional liquid chromatography with parallel second dimensions and quadruple parallel mass spectrometry for adult/infant formula analysis. J Chromatogr A. 2022;1661: 462682.

    Article  CAS  PubMed  Google Scholar 

  11. Flora JW, Null AP, Muddiman DC. Dual-micro-ESI source for precise mass determination on a quadrupole time-of-flight mass spectrometer for genomic and proteomic applications. Anal Bioanal Chem. 2002;373(7):538–46.

    Article  CAS  PubMed  Google Scholar 

  12. Livesay EA, Tang K, Taylor BK, Buschbach MA, Hopkins DF, LaMarche BL, et al. Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses. Anal Chem. 2008;80(1):294–302.

    Article  CAS  PubMed  Google Scholar 

  13. De Biasi V, Haskins N, Organ A, Bateman R, Giles K, Jarvis S. High throughput liquid chromatography/mass spectrometric analyses using a novel multiplexed electrospray interface. Rapid Commun Mass Spectrom. 1999;13(12):1165–8.

    Article  Google Scholar 

  14. Eckers C, Wolff JC, Haskins NJ, Sage AB, Giles K, Bateman R. Accurate mass liquid chromatography/mass spectrometry on orthogonal acceleration time-of-flight mass analyzers using switching between separate sample and reference sprays. 1. Proof of concept. Anal Chem. 2000;72(16):3683–8.

  15. Wolff JC, Eckers C, Sage AB, Giles K, Bateman R. Accurate mass liquid chromatography/mass spectrometry on quadrupole orthogonal acceleration time-of-flight mass analyzers using switching between separate sample and reference sprays. 2. Applications using the dual-electrospray ion source. Anal Chem. 2001;73(11):2605–12.

  16. Hiller DL, Brockman AH, Goulet L, Ahmed S, Cole RO, Covey T. Application of a non-indexed dual sprayer pneumatically assisted electrospray source to the high throughput quantitation of target compounds in biological fluids. Rapid Commun Mass Spectrom. 2000;14(21):2034–8.

    Article  CAS  PubMed  Google Scholar 

  17. Satomi Y, Kudo Y, Sasaki K, Hase T, Takao T. Accurate mass measurement in nano-electrospray ionization mass spectrometry by alternate switching of high voltage between sample and reference sprayers. Rapid Commun Mass Spectrom. 2005;19(4):540–6.

    Article  CAS  PubMed  Google Scholar 

  18. Chen CJ, Li FA, Her GR. Development of a low-flow multiplexed interface for capillary electrophoresis/electrospray ion trap mass spectrometry using sequential spray. Electrophoresis. 2008;29(10):1997–2003.

    Article  CAS  PubMed  Google Scholar 

  19. Bushey JM, Kaplany DA, Daneil RM, Glish GL. Pulsed nano-electrospray ionization: characterization of temporal response and implementation with a flared inlet capillary. Instrum Sci Technol. 2009;37(3):257–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Webber KGI, Truong T, Johnston SM, Zapata SE, Liang Y, Davis JM, et al. Label-free profiling of up to 200 single-cell proteomes per day using a dual-column nanoflow liquid chromatography platform. Anal Chem. 2022;94(15):6017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee ML, Gates EP, Farnsworth PB, Peaden PA, West WR, Morse MJ, et al. Evolving capabilities of compact, portable capillary LC. Presented at: HPLC 2022. San Diego, CA; 2022.

  22. Foster SW, Alirangues MJ, Naese JA, Constans E, Grinias JP. A low-cost, open-source digital stripchart recorder for chromatographic detectors using a Raspberry Pi. J Chromatogr A. 2019;1603:396–400.

  23. Rulison AJ, Flagan RC. Scale-up of electrospray atomization using linear arrays of Taylor cones. Rev Sci Instrum. 1993;64(3):683–6.

    Article  CAS  Google Scholar 

  24. Chambers AG, Ramsey JM. Microfluidic dual emitter electrospray ionization source for accurate mass measurements. Anal Chem. 2012;84(3):1446–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Chemical Measurement and Imaging Program in the National Science Foundation Division of Chemistry under Grant CHE-2045023 (to JPG) and a National Science Foundation Graduate Research Fellowship to SWF (DGE-2043212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Grinias.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 543 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, S.W., Parker, D., Piccolo, C. et al. Development of a dual-electrospray ionization source with in-line absorbance-based voltage control. Anal Bioanal Chem 415, 4147–4152 (2023). https://doi.org/10.1007/s00216-023-04564-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04564-3

Keywords

Navigation