Skip to main content
Log in

Construction and application of covalently bonded CD147 cell membrane chromatography model based on polystyrene microspheres

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, a novel cell membrane chromatography (CMC) model was developed to investigate cluster of differentiation 147 (CD147) targeted anti-tumor drug leads for specific screening and ligand-receptor interaction analysis by SNAP-tagged CD147 fusion protein conjugation and polystyrene microspheres (PS) modification. Traditional Chinese medicines (TCMs) are widely used in the treatment of cancer. CD147 plays important roles in tumor progression and acts as an attractive target for therapeutic intervention; therapeutic drugs for CD147-related cancers are limited to date. Thus, a screening method for active components in TCMs is crucial for the further research and development of CD147 antagonists. However, improvement is still needed to perform specific and accurate drug lead screening using the CMC-based method. Recently, our group developed a covalently immobilized receptor-SNAP-tag/CMC model using silica gel as carrier. Besides the carboxyl group on multi-step modified silica particles, the amino group of benzyl-guanine (BG, substrate of SNAP-tag) also possesses reactivity towards the carboxyl group on available carboxyl-modified PS. Herein, we used PS as carrier and an extended SNAP-tag with CD147 receptor to construct the PS-BG-CD147/CMC model for active compound investigation coupled with HPLC/MS and applied this coupled PS-BG-CD147/CMC-HPLC/MS two-dimensional system to drug lead screening from Nelumbinis Plumula extract (NPE) sample. In addition, to comprehensively verify the pharmacological effects of screened ingredients, a cell proliferation inhibition assay was performed, and the interaction between the ingredients and CD147 was studied by the frontal analysis method. This study developed a high-throughput PS-based CMC screening platform, which could be widely applied and utilized in chromatographic separation and drug lead discovery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CMC:

Cell membrane chromatography

CD147:

Cluster of differentiation 147

PS:

Polystyrene microspheres

TCMs:

Traditional Chinese medicines

BG:

Benzyl-guanine

NPE:

Nelumbinis Plumula extract

CMSP:

Cell membrane stationary phase

PS-COOH:

Carboxylate polystyrene microspheres

PS-BG-CMSP:

Polystyrene-based cell membrane stationary phase

References

  1. Wang KL, Chen Q, Shao YY, Yin SS, Liu CY, Liu YM, Wang R, Wang T, Qiu YL, Yu HY. Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother. 2021; 133. https://doi.org/10.1016/j.biopha.2020.111044.

  2. Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, Sailo BL, Shanmugam MK, Fan L, Arfuso F, Sethi G, Kunnumakkar AB. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res. 2019;144:192–209. https://doi.org/10.1016/j.phrs.2019.04.004.

    Article  CAS  PubMed  Google Scholar 

  3. Qi FH, Zhao L, Zhou AY, Zhang B, Li AY, Wang ZX, Han JQ. The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Biosci Trends. 2015;9(1):16–34. https://doi.org/10.5582/bst.2015.01019.

    Article  CAS  PubMed  Google Scholar 

  4. Miyauchi T, Kanekura T, Yamaoka A, Ozawa M, Miyazawa S, Muramatsu T. Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin-v domain and the beta-chain of major histocompatibility complex class-II antigen. J Biochem. 1990;107(2):316–23. https://doi.org/10.1093/oxfordjournals.jbchem.a123045.

    Article  CAS  PubMed  Google Scholar 

  5. Wu J, Hao ZW, Zhao YX, Yang XM, Tang H, Zhang X, Song F, Sun XX, Wang B, Nan G, Chen ZN, Bian HJ. Full-length soluble CD147 promotes MMP-2 expression and is a potential serological marker in detection of hepatocellular carcinoma. J Transl Med. 2014; 12. https://doi.org/10.1186/1479-5876-12-190.

  6. Xu J, Xu HY, Zhang Q, Song F, Jiang JL, Yang XM, Mi L, Wen N, Tian R, Wang L, Yao H, Feng Q, Zhang Y, Xing JL, Zhu P, Chen ZN. HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res. 2007;5(6):605–14. https://doi.org/10.1158/1541-7786.mcr-06-0286.

    Article  CAS  PubMed  Google Scholar 

  7. Heinzmann D, Noethel M, von Ungern-Sternberg S, Mitroulis I, Gawaz M, Chavakis T, May AE, Seizer P. CD147 is a novel interaction partner of integrin alpha M beta 2 mediating leukocyte and platelet adhesion. Biomol. 2020; 10 (4). https://doi.org/10.3390/biom10040541.

  8. Chen YK, Zhang HX, Gou XC, Horikawa Y, Xing JL, Chen ZN. Upregulation of HAb18G/CD147 in activated human umbilical vein endothelial cells enhances the angiogenesis. Cancer Lett. 2009;278(1):113–21. https://doi.org/10.1016/j.canlet.2009.01.004.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Yuan L, Yang XM, Wei D, Wang B, Sun XX, Feng F, Nan G, Wang Y, Chen ZN, Bian HJ. A chimeric antibody targeting CD147 inhibits hepatocellular carcinoma cell motility via FAK-PI3K-Akt-Girdin signaling pathway. Clin Exp Metas. 2015;32(1):39–53. https://doi.org/10.1007/s10585-014-9689-7.

    Article  CAS  Google Scholar 

  10. Wang SH, Liu C, Liu XJ, He YX, Shen DF, Luo QK, Dong Y, Dong HF, Pang ZG. Effects of matrix metalloproteinase inhibitor doxycycline and CD147 antagonist peptide-9 on gallbladder carcinoma cell lines. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2017;39(10):1010428317718192–1010428317718192.

    Article  PubMed  Google Scholar 

  11. Fu ZG, Wang L, Cui HY, Peng JL, Wang SJ, Geng JJ, Liu JD, Feng F, Song F, Li L, Zhu P, Jiang JL, Chen ZN. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells. Oncotarget. 2016;7(8):9430–48. https://doi.org/10.18632/oncotarget.6990.

    Article  Google Scholar 

  12. Butera A, Quaranta MT, Crippa L, Spinello I, Saulle E, Di Carlo N, Campanile D, Boirivant M, Labbaye C. CD147 Targeting by AC-73 Induces Autophagy and Reduces Intestinal Fibrosis Associated with TNBS Chronic Colitis. Journal of Crohns & Colitis. 2022. https://doi.org/10.1093/ecco-jcc/jjac084.

    Article  Google Scholar 

  13. Spinello I, Saulle E, Quaranta MT, Pasquini L, Pelosi E, Castelli G, Ottone T, Voso MT, Testa U, Labbaye C. The small-molecule compound AC-73 targeting CD147 inhibits leukemic cell proliferation, induces autophagy and increases the chemotherapeutic sensitivity of acute myeloid leukemia cells. Haematologica. 2019;104(5):973–85. https://doi.org/10.3324/haematol.2018.199661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He LC, Yang GD, Geng XD. Enzymatic activity and chromatographic characteristics of the cell membrane immobilized on silica surface. Chinese Sci Bull. 1999;44(9):826–31. https://doi.org/10.1007/bf02885029.

    Article  CAS  Google Scholar 

  15. He LC, Wang SC, Geng XD. Coating and fusing cell membranes onto a silica surface and their chromatographic characteristics. Chromatographia. 2001;54(1–2):71–6. https://doi.org/10.1007/bf02491836.

    Article  CAS  Google Scholar 

  16. Ma WN, Wang C, Liu R, Wang N, Lv YN, Dai BL, He LC. Advances in cell membrane chromatography. J Chromatogr A. 2021; 1639. https://doi.org/10.1016/j.chroma.2021.461916.

  17. Ding X, Chen XF, Cao Y, Jia D, Wang DY, Zhu ZY, Zhang JP, Hong ZY, Chai YF. Quality improvements of cell membrane chromatographic column. J Chromatogr A. 2014;1359:330–5. https://doi.org/10.1016/j.chroma.2014.07.071.

    Article  CAS  PubMed  Google Scholar 

  18. Ding X, Cao Y, Yuan YF, Gong ZR, Liu Y, Zhao L, Lv L, Zhang GQ, Wang DY, Jia D, Zhu ZY, Hong ZY, Chen XF, Chai YF. Development of APTES-decorated HepG2 cancer stem cell membrane chromatography for screening active components from Salvia miltiorrhiza. Anal Chem. 2016;88(24):12081–9. https://doi.org/10.1021/acs.analchem.6b02709.

    Article  CAS  PubMed  Google Scholar 

  19. Gu YQ, Chen X, Wang Y, Liu Y, Zheng LY, Li XQ, Wang R, Wang SZ, Li SN, Chai YF, Su JC, Yuan YF, Chen XF. Development of 3-mercaptopropyltrimethox-ysilane (MPTS)-modified bone marrow mononuclear cell membrane chromatography for screening anti-osteoporosis components from Scutellariae Radix. Acta Pharmaceutica Sinica B. 2020;10(10):1856–65. https://doi.org/10.1016/j.apsb.2020.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma WN, Yang L, Liu YH, Lei PP, Zhang YM. beta(2)-adrenergic receptor affinity chromatography with an interaction force analysis model: A method for analysis of active compounds targeting beta(2)-adrenergic receptor. J Chromatogr A. 2021; 1652. https://doi.org/10.1016/j.chroma.2021.462371.

  21. Wu C, Wang NN, Xu PC, Wang XP, Shou D, Zhu Y. Preparation and application of polyvinyl alcohol-decorated cell membrane chromatography for screening anti-osteoporosis components from Liuwei Dihuang decoction-containing serum. J Sep Sci. 2020;43(11):2105–14. https://doi.org/10.1002/jssc.201901203.

    Article  CAS  PubMed  Google Scholar 

  22. Fu J, Jia QQ, Liang PD, Wang SS, Zhou HX, Zhang LY, Gao CL, Wang H, Lv YN, Han SL. Targeting and covalently immobilizing the EGFR through SNAP-tag technology for screening drug leads. Anal Chem. 2021;93(34):11719–28. https://doi.org/10.1021/acs.analchem.1c01664.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou HX, Fu J, Jia QQ, Wang SS, Liang PD, Wang YM, Lv YN, Han SL. Magnetic nanoparticles covalently immobilizing epidermal growth factor receptor by SNAP-Tag protein as a platform for drug discovery. Talanta. 2022; 240. https://doi.org/10.1016/j.talanta.2021.123204.

  24. Li SS, Zhang HJ, Zhou M, Zhang Z, Wang CW, Luo G, Liu Q. Progress on functionalization of polystyrene microsphere and its application. Modern Chem Ind. 2017;37(5):38–41, 43.

    CAS  Google Scholar 

  25. Marmey P, Lebaz N, Eissa M, Delair T, Elaissari A. Polystyrene latex particles bearing primary amine groups via soap-free emulsion polymerization. Polym Int. 2020;69(10):1038–44. https://doi.org/10.1002/pi.6060.

    Article  CAS  Google Scholar 

  26. Ayazi Z, Ekhteraei M-s, Pashayi S, Ahmadian SMS. Zr-based metal-organic framework incorporated polystyrene nanocomposite as a novel sorbent for ultrasound assisted-thin film microextraction of organophosphorus pesticides from complex samples. Food Chem. 2022; 393. https://doi.org/10.1016/j.foodchem.2022.133343.

  27. Li SL, Sun SH, Qi F, Dou XM. Enhanced hydrolytic removal of tylosin in wastewater using polymer-based solid acid catalysts converted from polystyrene. J Environ Sci. 2023;126:287–96. https://doi.org/10.1016/jjes.2022.05.027.

    Article  Google Scholar 

  28. Yuan HN, He GX. Synthesis of controllable carboxylated polystyrene microspheres and its application in the diffusion of in-vitro diagnostic chips. Compos Interfaces. 2021;28(7):717–33. https://doi.org/10.1080/09276440.2020.1812948.

    Article  CAS  Google Scholar 

  29. Lv YN, Wang SS, Liang PD, Wang YM, Zhang X, Jia QQ, Fu J, Han SL, He LC. Screening and evaluation of anti-SARS-CoV-2 components from Ephedra sinica by ACE2/CMC-HPLC-IT-TOF-MS approach. Anal Bioanal Chem. 2021;413(11):2995–3004. https://doi.org/10.1007/s00216-021-03233-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loun B, Hage DS. Characterization of thyroxine albumin binding using high-performance affinity-chromatography. 1. Interactions at the warfarin and indole sites of albumin. J Chromatograph Biomed Appl. 1992;579(2):225–35. https://doi.org/10.1016/0378-4347(92)80386-5.

    Article  CAS  Google Scholar 

  31. Ma WN, Yang L, Lv YN, Fu J, Zhang YM, He LC. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method. J Chromatogr A. 2017;1503:12–20. https://doi.org/10.1016/j.chroma.2017.04.053.

    Article  CAS  PubMed  Google Scholar 

  32. Jia QQ, Fu J, Gao CL, Wang H, Wang SS, Liang PD, Han SL, Lv YN, He LC. MrgX2-SNAP-tag/cell membrane chromatography model coupled with liquid chromatography-mass spectrometry for anti-pseudo-allergic compound screening in Arnebiae Radix. Anal Bioanal Chem. 2022;414(19):5741–53. https://doi.org/10.1007/s00216-022-04167-4.

    Article  CAS  PubMed  Google Scholar 

  33. Ghamat SN, Talebpour Z, Mehdi A. Click reactions: Recent trends in preparation of new sorbents and stationary phases for extraction and chromatographic applications. Trac-Trends in Analytical Chemistry. 2019;118:556–73. https://doi.org/10.1016/j.trac.2019.06.029.

    Article  CAS  Google Scholar 

  34. Olejniczak J, Collet G, Huu VAN, Chan M, Lee S, Almutairi A. Biorthogonal click chemistry onpoly(lactic-co-glycolicacid)-polymeric particles. Biomaterials Science. 2017;5(2):211–5. https://doi.org/10.1039/c6bm00721j.

    Article  CAS  PubMed  Google Scholar 

  35. Chen SX, Li XP, Wu JX, Li JY, Xiao MZ, Yang Y, Liu ZQ, Cheng YY. Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. J Ethnopharmacol. 2021; 266. https://doi.org/10.1016/j.jep.2020.113429.

  36. Zhao XL, Dang YL. Recent advances in Chemical components, extraction and pharmacological effects of Nelumbinis Plumula. Food Science. 2018;39(23):329–36.

    Google Scholar 

  37. Sui Y, He XS, Wang SC. Quantitative assay and optimization of ultrasonic-assisted extraction of three main alkaloids from Plumula nelumbinis. Chin Pharm J. 2018;53(22):1901–7.

    Google Scholar 

  38. Xiao XH, Liu QR, Liu MH, Liu S, Jiang YP. Chemical constituents from the N-butanol faction of Nelumbinis Plumula aqueous extracts. China Journal of Traditional Chinese Medicine and Pharmacy. 2022;37(1):395–400.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82104118, 81973278, and 81930096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 837 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Wang, S., Wang, Y. et al. Construction and application of covalently bonded CD147 cell membrane chromatography model based on polystyrene microspheres. Anal Bioanal Chem 415, 1371–1383 (2023). https://doi.org/10.1007/s00216-023-04528-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04528-7

Keywords

Navigation