Skip to main content
Log in

Solid-phase microextraction Arrow combined with comprehensive two-dimensional gas chromatography–mass spectrometry for the elucidation of the volatile composition of honey samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a solid-phase microextraction (SPME) Arrow method combined with comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS) was developed for the elucidation of the volatile composition of honey samples. The sample preparation protocol was optimized to ensure high extraction efficiency of the volatile organic compounds (VOCs) which are directly associated with the organoleptic properties of honey and its acceptance by the consumers. Following its optimization, SPME Arrow was compared to conventional SPME in terms of sensitivity, precision, and number of extracted VOCs. The utilization of SPME Arrow fibers enabled the determination of 203, 147, and 149 compounds in honeydew honey, flower honey, and pine honey, respectively, while a significantly lower number of compounds (124, 94, and 111 for honeydew honey, flower honey, and pine honey, respectively) was determined using conventional SPME. At the same time, the utilization of SPME Arrow resulted in enhanced sensitivity and precision. All things considered, SPME Arrow and GC × GC–MS can be considered as highly suitable for the elucidation of the volatile composition of complex food samples resulting in high sensitivity and separation efficiency.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang X, Rogers KM, Li Y, Yang S, Chen L, Zhou J. Untargeted and targeted discrimination of honey collected by Apis cerana and Apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GC-MS. J Agric Food Chem. 2019;67:12144–52. https://doi.org/10.1021/acs.jafc.9b04438.

    Article  CAS  PubMed  Google Scholar 

  2. Verzera A, Condurso C. Sampling techniques for the determination of the volatile fraction of honey. Elsevier; 2012.

    Book  Google Scholar 

  3. Durmaz NE, Anli E, Güçer Y, Artik N. Analysis of volatile compounds of some Turkish flower honey samples by solid-phase microextraction and gas chromatography-mass spectrometry. Eur J Sci Technol. 2020;20:796–800. https://doi.org/10.31590/ejosat.764544.

    Article  Google Scholar 

  4. Gül A, Pehlivan T. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J Biol Sci. 2018;25:1056–65. https://doi.org/10.1016/j.sjbs.2018.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piasenzotto L, Gracco L, Conte L. Solid phase microextraction (SPME) applied to honey quality control. J Sci Food Agric. 2003;83:1037–44. https://doi.org/10.1002/jsfa.1502.

    Article  CAS  Google Scholar 

  6. Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. Honey: chemical composition, stability and authenticity. Food Chem. 2016;196:309–23. https://doi.org/10.1016/j.foodchem.2015.09.051.

    Article  CAS  PubMed  Google Scholar 

  7. Xagoraris M, Skouria A, Revelou PK, Alissandrakis E, Tarantilis PA, Pappas CS. Response surface methodology to optimize the isolation of dominant volatile compounds from monofloral Greek thyme honey using SPME-GC-MS. Molecules. 2021;26. https://doi.org/10.3390/molecules26123612.

  8. Rowland CY, Blackman AJ, D’Arcy BR, Rintoul GB. Comparison of organic extractives found in leatherwood (Eucryphia lucida) honey and leatherwood flowers and leaves. J Agric Food Chem. 1995;43:753–63. https://doi.org/10.1021/jf00051a036.

    Article  CAS  Google Scholar 

  9. Bouseta A, Collin S, Dufour JP. Characteristic aroma profiles of unifloral honeys obtained with a dynamic headspace GC-MS system. J Apic Res. 1992;31:96–109. https://doi.org/10.1080/00218839.1992.11101268.

    Article  CAS  Google Scholar 

  10. Bouseta A, Collin S. Optimized Likens — Nickerson methodology for quantifying honey flavors. J Agric Food Chem. 1995;43:1890–7.

    Article  CAS  Google Scholar 

  11. D’Arcy BR, Rintoul GB, Rowland CY, Blackman AJ. Composition of Australian honey extractives. 1. Norisoprenoids, monoterpenes, and other natural volatiles from blue gum (Eucalyptus leucoxylon) and yellow box (Eucalyptus melliodora) honeys. J Agric Food Chem. 1997;45:1834–43. https://doi.org/10.1021/jf960625+.

    Article  Google Scholar 

  12. Alissandrakis E, Daferera D, Tarantilis PA, Polissiou M, Harizanis PC. Ultrasound-assisted extraction of volatile compounds from citrus flowers and citrus honey. Food Chem. 2003;82:575–82. https://doi.org/10.1016/S0308-8146(03)00013-X.

    Article  CAS  Google Scholar 

  13. Dekebo A, Kwon S-Y, Kim D-H, Jung C. Volatiles analysis of honey by gas chromatography-mass spectrometry (GC-MS): comparison of SPME volatiles extraction methods. J Apicult. 2018;33:117–28. https://doi.org/10.17519/apiculture.2018.06.33.2.117.

    Article  Google Scholar 

  14. Soria AC, Sanz J, Martínez-Castro I. SPME followed by GC-MS: a powerful technique for qualitative analysis of honey volatiles. Eur Food Res Technol. 2009;228:579–90. https://doi.org/10.1007/s00217-008-0966-z.

    Article  CAS  Google Scholar 

  15. Kataoka H, Lord HL, Pawliszyn J. Applications of solid-phase microextraction in food analysis. J Chromatogr A. 2000;880:35–62. https://doi.org/10.1016/S0021-9673(00)00309-5.

    Article  CAS  PubMed  Google Scholar 

  16. Herrington JS, Gómez-Ríos GA, Myers C, Stidsen G, Bell DS. Hunting molecules in complex matrices with spme arrows: a review. Separations. 2020;7:12. https://doi.org/10.3390/separations7010012.

    Article  CAS  Google Scholar 

  17. Manousi N, Rosenberg E, Zachariadis GA. Solid-phase microextraction arrow for the sampling of volatile organic compounds in milk samples. Separations. 2020;7:1–12. https://doi.org/10.3390/separations7040075.

    Article  CAS  Google Scholar 

  18. Xu XB, Murtada K, Pawliszyn J. Determination of selected volatile terpenes in fish samples via solid phase microextraction arrow coupled with GC-MS. Talanta. 2021;221: 121446. https://doi.org/10.1016/j.talanta.2020.121446.

    Article  CAS  PubMed  Google Scholar 

  19. Cha J, Chin YW, Lee JY, Kim TW, Jang HW. Analysis of volatile compounds in soju, a Korean distilled spirit, by SPME-Arrow-GC/MS. Foods. 2020;9. https://doi.org/10.3390/foods9101422.

  20. Šikuten I, Štambuk P, Konti JK, Maleti E. Optimization of SPME-Arrow-GC/MS method for determination of free and bound volatile organic compounds from grape skins. Molecules. 2021;26:7409.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nam TG, Lee JY, Kim BK, Song NE, Jang HW. Analyzing volatiles in brown rice vinegar by headspace solid-phase microextraction (SPME)–Arrow: optimizing the extraction conditions and comparisons with conventional SPME. Int J Food Prop. 2019;22:1195–204. https://doi.org/10.1080/10942912.2019.1634099.

    Article  CAS  Google Scholar 

  22. Song NE, Lee JY, Lee YY, Park JD, Jang HW. Comparison of headspace–SPME and SPME-Arrow–GC–MS methods for the determination of volatile compounds in Korean salt–fermented fish sauce. Appl Biol Chem. 2019;62. https://doi.org/10.1186/s13765-019-0424-6.

  23. Lee JY, Kim WS, Lee YY, Choi YS, Choi H, Jang HW. Solid-phase microextraction Arrow for the volatile organic compounds in soy sauce. J Sep Sci. 2019;42:2942–8. https://doi.org/10.1002/jssc.201900388.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Wang C, Wang L, Chen S, Xu Y. Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu). J Chromatogr A. 2020;1610: 460584. https://doi.org/10.1016/j.chroma.2019.460584.

    Article  CAS  PubMed  Google Scholar 

  25. Baroni MV, Nores ML, Díaz MDP, Chiabrando GA, Fassano JP, Costa C, Wunderlin DA. Determination of volatile organic compound patterns characteristic of five unifloral honey by solid-phase microextraction-gas chromatography-mass spectrometry coupled to chemometrics. J Agric Food Chem. 2006;54:7235–41. https://doi.org/10.1021/jf061080e.

    Article  CAS  PubMed  Google Scholar 

  26. Mondello L, Tranchida PQ, Dugo P, Dugo G. Comprehensive two-dimensional gas chromatography-mass spectrometry: a review. Mass Spectrom Rev. 2008;27:101–24.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Z, Phillips JB. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci. 1991;29:227–31.

    Article  CAS  Google Scholar 

  28. Stilo F, Bicchi C, Robbat A, Reichenbach SE, Cordero C. Untargeted approaches in food-omics: the potential of comprehensive two-dimensional gas chromatography/mass spectrometry. TrAC - Trends Anal Chem. 2021;135: 116162. https://doi.org/10.1016/j.trac.2020.116162.

    Article  CAS  Google Scholar 

  29. Purcaro G, Tranchida PQ, Jacques RA, Caramão EB, Moret S, Conte L, Dugo P, Dugo G, Mondello L. Characterization of the yerba mate (Ilex paraguariensis) volatile fraction using solid-phase microextraction-comprehensive 2-D GC-MS. J Sep Sci. 2009;32:3755–63. https://doi.org/10.1002/jssc.200900343.

    Article  CAS  PubMed  Google Scholar 

  30. Jerković I, Tuberoso CIG, Marijanović Z, Jelić M, Kasum A. Headspace, volatile and semi-volatile patterns of Paliurus spina-christi unifloral honey as markers of botanical origin. Food Chem. 2009;112:239–45. https://doi.org/10.1016/j.foodchem.2008.05.080.

    Article  CAS  Google Scholar 

  31. Verzera A, Campisi S, Zappalà M, Bonaccorsi I. SPME-GC-MS analysis of honey volatile components for the characterization of different floral origin. Am Lab. 2001;33:18–21.

    CAS  Google Scholar 

  32. Rivellino SR, Hantao LW, Risticevic S, Carasek E, Pawliszyn J, Augusto F. Detection of extraction artifacts in the analysis of honey volatiles using comprehensive two-dimensional gas chromatography. Food Chem. 2013;141:1828–33. https://doi.org/10.1016/j.foodchem.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  33. Balasubramanian S, Panigrahi S. Solid-Phase Microextraction (SPME) techniques for quality characterization of food products: a review. Food Bioproc Technol. 2011;4:1–26. https://doi.org/10.1007/s11947-009-0299-3.

    Article  CAS  Google Scholar 

  34. Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch E. A review of volatile analytical methods for determining the botanical origin of honey. Food Chem. 2007;103:1032–43. https://doi.org/10.1016/j.foodchem.2006.07.068.

    Article  CAS  Google Scholar 

  35. Tsoutsi CS, Albanis TA. Optimization of headspace solid-phase microextraction conditions for the determination of organophosphorus insecticides in olive oil. Int J Environ Anal Chem. 2004;84:3–13. https://doi.org/10.1080/03067310310001597635.

    Article  CAS  Google Scholar 

  36. Zhang Z, Pawliszyn J. Headspace solid-phase microextraction. Anal Chem. 1993;65:1843–52. https://doi.org/10.1021/ac00062a008.

    Article  CAS  Google Scholar 

  37. Castro-Vázquez L, Díaz-Maroto MC, Pérez-Coello MS. Volatile composition and contribution to the aroma of Spanish honeydew honeys. Identification of a new chemical marker. J Agric Food Chem. 2006;54:4809–13. https://doi.org/10.1021/jf0604384.

    Article  CAS  PubMed  Google Scholar 

  38. Kaziur-Cegla W, Jochmann MA, Molt K, Bruchmann A, Schmidt TC. In-tube dynamic extraction for analysis of volatile organic compounds in honey samples. Food Chem X. 2022;14: 100337. https://doi.org/10.1016/j.fochx.2022.100337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. El-Sayed AM, Unelius CR, Suckling DM. Honey norisoprenoids attract bumble bee, Bombus terrestris, in New Zealand mountain beech forests. J Agric Food Chem. 2018;66:13065–72. https://doi.org/10.1021/acs.jafc.8b04175.

    Article  CAS  PubMed  Google Scholar 

  40. Tedesco R, Scalabrin E, Malagnini V, Strojnik L, Ogrinc N, Capodaglio G. Characterization of botanical origin of Italian honey by carbohydrate composition and volatile organic compounds. Foods. 2022;11:2441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bayraktar D, Onoǧur TA. Investigation of the aroma impact volatiles in Turkish pine honey samples produced in Marmaris, Datça and Fethiye regions by SPME/GC/MS technique. Int J Food Sci Technol. 2011;46:1060–5. https://doi.org/10.1111/j.1365-2621.2011.02588.x.

    Article  CAS  Google Scholar 

  42. Xagoraris M, Revelou PK, Dedegkika S, Kanakis CD, Papadopoulos GK, Pappas CS, Tarantilis PA. SPME-GC-MS and FTIR-ATR spectroscopic study as a tool for unifloral common Greek honeys’ botanical origin identification. Appl Sci (Switzerland). 2021;11. https://doi.org/10.3390/app11073159.

Download references

Acknowledgements

We would like to acknowledge the support of this work through the Restek Academic Support Program (RASP—Restek, Bellefonte, PA, USA) under agreement no. 201722830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Ferracane.

Ethics declarations

Conflict of interest

Luigi Mondello is editor of Analytical and Bioanalytical Chemistry but was not involved in the peer review of this article. All the other authors have no conflict of interest to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Comprehensive 2D Chromatography with guest editors Peter Q. Tranchida and Luigi Mondello.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 548 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manousi, N., Kalogiouri, N., Ferracane, A. et al. Solid-phase microextraction Arrow combined with comprehensive two-dimensional gas chromatography–mass spectrometry for the elucidation of the volatile composition of honey samples. Anal Bioanal Chem 415, 2547–2560 (2023). https://doi.org/10.1007/s00216-023-04513-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04513-0

Keywords

Navigation