Skip to main content
Log in

Nucleic acid and nanomaterial-assisted signal-amplified strategies in fluorescent analysis of circulating tumor cells and small extracellular vesicles

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract 

As two main types of liquid biopsy markers, both circulating tumor cells (CTCs) and small extracellular vesicles (sEVs) play important roles in the diagnosis and prognosis of cancers. CTCs are malignant cells that detach from the original tumor tissue and enter the circulation of body fluids. sEVs are nanoscale vesicles secreted by normal cells or pathological cells. However, CTCs and sEVs in body fluids are scarce, leading to great difficulties in the accurate analysis of related diseases. For the sensitive detection of CTCs and sEVs in body fluids, various types of nucleic acid and nanomaterial-assisted signal amplification strategies have been developed. In this review, we summarize the recent advances in fluorescent detection of CTCs and sEVs in liquid biopsy based on nucleic acid and nanomaterial-assisted signal amplification strategies. We also discuss their advantages, challenges, and future prospects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References 

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    PubMed  Google Scholar 

  2. Zhao M, Mi D, Ferdows BE, Li Y, Wang R, Li J, et al. State-of-the-art nanotechnologies for the detection, recovery, analysis and elimination of liquid biopsy components in cancer. Nano Today. 2022;42: 101361.

    CAS  Google Scholar 

  3. Diamantis A, Magiorkinis E, Koutselini H. Fine-needle aspiration (FNA) biopsy: historical aspects. Folia Histochem Cytobiol. 2009;47(2):191–7.

    PubMed  Google Scholar 

  4. Sumida Y, Nakajima A, Itoh Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2014;20(2):475–85.

    PubMed  PubMed Central  Google Scholar 

  5. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235-U10.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ye M, Kong Y, Zhang C, Lv Y, Cheng S, Hou D, et al. Near-Infrared light controllable DNA walker driven by endogenous adenosine triphosphate for in situ spatiotemporal imaging of intracellular microRNA. ACS Nano. 2021;15(9):14253–62.

    CAS  PubMed  Google Scholar 

  7. Shen Z, Wu A, Chen X. Current detection technologies for circulating tumor cells. Chem Soc Rev. 2017;46(8):2038–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5(3):1425–34.

    Google Scholar 

  9. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.

    CAS  PubMed  Google Scholar 

  10. Sullivan LB. Extracellular vesicles: taking metabolism on the road. Nat Chem Biol. 2017;13(9):924–5.

    CAS  PubMed  Google Scholar 

  11. An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 2015;4:27522.

    PubMed  Google Scholar 

  12. Tsai WS, Nimgaonkar A, Segurado O, Chang Y, Hsieh B, Shao HJ, et al. Prospective clinical study of circulating tumor cells for colorectal cancer screening. J Clin Oncol. 2018;36(4):556–556.

    Google Scholar 

  13. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–791.

  14. Li P, Yu X, Han W, Kong Y, Bao W, Zhang J, et al. Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis. ACS Sens. 2019;4(5):1433–41.

    CAS  PubMed  Google Scholar 

  15. Kang YT, Hadlock T, Lo TW, Purcell E, Mutukuri A, Fouladdel S, et al. Dual-Isolation and profiling of circulating tumor cells and cancer exosomes from blood samples with melanoma using immunoaffinity-based microfluidic interfaces. Adv Sci. 2020;7(19):2001581.

    CAS  Google Scholar 

  16. Gallo M, De Luca A, Frezzetti D, Passaro V, Maiello MR, Normanno N. The potential of monitoring treatment response in non-small cell lung cancer using circulating tumour cells. Expert Rev Mol Diagn. 2019;19(8):683–94.

    CAS  PubMed  Google Scholar 

  17. Haraszti RA, Didiot M-C, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5:32570.

    PubMed  Google Scholar 

  18. Mellby LD, Nyberg AP, Johansen JS, Wingren C, Nordestgaard BG, Bojesen SE, et al. Serum biomarker signature-based liquid biopsy for diagnosis of early-stage pancreatic cancer. J Clin Oncol. 2018;36(28):2887–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, et al. Aptamer-based detection of circulating targets for precision medicine. Chem Rev. 2021;121(19):12035–3105.

    CAS  PubMed  Google Scholar 

  20. Onukwugha N-E, Kang Y-T, Nagrath S. Emerging micro-nanotechnologies for extracellular vesicles in immuno-oncology: from target specific isolations to immunomodulation. Lab Chip. 2022;22(18):3314–39.

    CAS  PubMed  Google Scholar 

  21. Vajhadin F, Mazloum-Ardakani M, Sanati A, Haghniaz R, Travas-Sejdic J. Optical cytosensors for the detection of circulating tumour cells. J Mater Chem B. 2022;10(7):990–1004.

    CAS  PubMed  Google Scholar 

  22. Wang X, Cheng S, Wang X, Wei L, Kong Q, Ye M, et al. pH-Sensitive dye-based nanobioplatform for colorimetric detection of heterogeneous circulating tumor cells. Acs Sens. 2021;6(5):1925–32.

    CAS  PubMed  Google Scholar 

  23. Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew. 2017;56(39):11916–20.

    CAS  Google Scholar 

  24. Cao Y, Yu X, Han B, Dong L, Xu J, Dai Y, et al. In situ programmable DNA circuit-promoted electrochemical characterization of stemlike phenotype in breast cancer. J Am Chem Soc. 2021;143(39):16078–86.

    CAS  PubMed  Google Scholar 

  25. Wang X, Wang X, Cheng S, Ye M, Zhang C, Xian Y. Near-infrared light-switched MoS2 nanoflakes@gelatin bioplatform for capture, detection, and nondestructive release of circulating tumor cells. Anal Chem. 2020;92(4):3111–7.

    CAS  PubMed  Google Scholar 

  26. Wang SS, Zhao XP, Liu FF, Younis MR, Xia XH, Wang C. Direct plasmon-enhanced electrochemistry for enabling ultrasensitive and label-free detection of circulating tumor cells in blood. Anal Chem. 2019;91(7):4413–20.

    CAS  PubMed  Google Scholar 

  27. Li J, Li Y, Li P, Zhang Y, Du L, Wang Y, et al. Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater. 2022;144:1–14.

    CAS  PubMed  Google Scholar 

  28. Kim WH, Lee JU, Jeon MJ, Park KH, Sim SJ. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Biosens Bioelectron. 2022;205: 114116.

    CAS  PubMed  Google Scholar 

  29. Xu X, Lin J, Guo Y, Wu X, Xu Y, Zhang D, et al. TiO2-based surface-enhanced raman scattering bio-probe for efficient circulating tumor cell detection on microfilter. Biosens Bioelectron. 2022;210: 114305.

    CAS  PubMed  Google Scholar 

  30. Tang Q, Xiao X, Li R, He H, Li S, Ma C. Recent advances in detection for breast-cancer-derived exosomes. Molecules. 2022;27(19):6673.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, et al. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 2022;21(1):56.

    PubMed  PubMed Central  Google Scholar 

  32. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors: the past, present and future. Chem Soc Rev. 2017;46(23):7105–23.

    CAS  PubMed  Google Scholar 

  33. Wang C, Ye M, Cheng L, Li R, Zhu W, Shi Z, et al. Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomater. 2015;54:55–62.

    CAS  Google Scholar 

  34. Rodrigues M, Richards N, Ning B, Lyon CJ, Hu TY. Rapid lipid-based approach for normalization of quantum-dot-detected biomarker expression on extracellular vesicles in complex biological samples. Nano Lett. 2019;19(11):7623–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hussain SH, Huertas CS, Mitchell A, Deman AL, Laurenceau E. Biosensors for circulating tumor cells (CTCs)-biomarker detection in lung and prostate cancer: trends and prospects. Biosens Bioelectron. 2022;197: 113770.

    CAS  PubMed  Google Scholar 

  36. Wu L, Wang Y, Zhu L, Liu Y, Wang T, Liu D, et al. Aptamer-based liquid biopsy. Acs Appl Bio Mater. 2020;3(5):2743–64.

    CAS  PubMed  Google Scholar 

  37. Mei T, Lu X, Sun N, Li X, Chen J, Liang M, et al. Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy. J Pharm Anal. 2018;158:204–8.

    CAS  Google Scholar 

  38. Singh N, Huang L, Wang DB, Shao N, Zhang XE. Simultaneous detection of a cluster of differentiation markers on leukemia-derived exosomes by multiplex immuno-polymerase chain reaction via capillary electrophoresis analysis. Anal Chem. 2020;92(15):10569–77.

    CAS  PubMed  Google Scholar 

  39. Ko J, Wang Y, Sheng K, Weitz DA, Weissleder R. Sequencing-based protein analysis of single extracellular vesicles. ACS Nano. 2021;15(3):5631–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mohsen MG, Kool ET. The discovery of rolling circle amplification and rolling circle transcription. Acc Chem Res. 2016;49(11):2540–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao X, Teng X, Dai Y, Li J. Rolling circle amplification-assisted flow cytometry approach for simultaneous profiling of exosomal surface proteins. ACS Sens. 2021;6(10):3611–20.

    CAS  PubMed  Google Scholar 

  42. Wang J, Dong HY, Zhou Y, Han LY, Zhang T, Lin M, et al. Immunomagnetic antibody plus aptamer pseudo-DNA nanocatenane followed by rolling circle amplication for highly-sensitive CTC detection. Biosens Bioelectron. 2018;122:239–46.

    CAS  PubMed  Google Scholar 

  43. Zhao X, Luo C, Mei Q, Zhang H, Zhang W, Su D, et al. Aptamer-cholesterol-mediated proximity ligation assay for accurate identification of exosomes. Anal Chem. 2020;92(7):5411–4518.

    CAS  PubMed  Google Scholar 

  44. Chen T, Fu X, Zhang Q, Mao D, Song Y, Feng C, et al. A DNA logic gate with dual-anchored proximity aptamers for the accurate identification of circulating tumor cells. Chem Commun. 2020;56(51):6961–4.

    CAS  Google Scholar 

  45. Gao Q, Zhao Y, Xu K, Zhang C, Ma Q, Qi L, et al. Highly specific, single-step cancer cell isolation with multi-aptamer-mediated proximity ligation on live cell membranes. Angew. 2020;59(52):23564–8.

    CAS  Google Scholar 

  46. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL. A DNA-fuelled molecular machine made of DNA. Nature. 2000;406(6796):605–8.

    CAS  PubMed  Google Scholar 

  47. Miao P, Tang Y. Cascade toehold-mediated strand displacement reaction for ultrasensitive detection of exosomal microRNA. CCS Chem. 3(7):2331–2339.

  48. Dirks MR, Pierce NA. Triggered amplification by hybridization chain reaction. PNAS 2004;101(43):15275–15278.

  49. Ding C, Zhang C, Yin X, Cao X, Cai M, Xian Y. Near-infrared fluorescent Ag2S nanodot-based signal amplification for efficient detection of circulating tumor cells. Anal Chem. 2018;90(11):6702–9.

    CAS  PubMed  Google Scholar 

  50. Shen W, Guo K, Adkins GB, Jiang Q, Liu Y, Sedano S, et al. A single extracellular vesicle (EV) flow cytometry approach to reveal EV heterogeneity. Angew. 2018;57(48):15675–80.

    CAS  Google Scholar 

  51. Rafiee SD, Kocabey S, Mayer M, List J, Ruegg C. Detection of HER2(+) breast cancer cells using bioinspired DNA-based signal amplification. ChemMedChem. 2020;15(8):661–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang X, Shang H, Ma C, Chen L. A fluorescence assay for exosome detection based on bivalent cholesterol anchor triggered target conversion and enzyme-free signal amplification. Anal Chem. 2021;93(24):8493–500.

    CAS  PubMed  Google Scholar 

  53. Wang H, Zeng J, Huang J, Cheng H, Chen B, Hu X, et al. A self-serviced-track 3D DNA walker for ultrasensitive detection of tumor exosomes by glycoprotein profiling. Angew. 2022;61(19): e202116932.

    CAS  Google Scholar 

  54. Cheng S, Kong Q, Hu X, Zhang C, Xian Y. An ultrasensitive strand displacement signal amplification-assisted synchronous fluorescence assay for surface proteins of small extracellular vesicle analysis and cancer identification. Anal Chem. 2022;94(2):1085–91.

    CAS  PubMed  Google Scholar 

  55. Yu Y, Zhang WS, Guo Y, Peng H, Zhu M, Miao D, et al. Engineering of exosome-triggered enzyme-powered DNA motors for highly sensitive fluorescence detection of tumor-derived exosomes. Biosens Bioelectron. 2020;167: 112482.

    CAS  PubMed  Google Scholar 

  56. Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–545.

    CAS  PubMed  Google Scholar 

  57. Liu H, You Y, Zhu Y, Zheng H. Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. Anal Methods. 2021;13(43):5103–19.

    CAS  PubMed  Google Scholar 

  58. Li P, Wang J, Gao M, Wang J, Ma Y, Gu Y. Membrane feature-inspired profiling of extracellular vesicles for pancreatic cancer diagnosis. Anal Chem. 2021;93(28):9860–8.

    CAS  PubMed  Google Scholar 

  59. Miao P, Chai H, Tang Y. DNA hairpins and dumbbell-wheel transitions amplified walking nanomachine for ultrasensitive nucleic acid detection. ACS Nano. 16 (3):4726–4733.

  60. Kong Q, Cheng S, Hu X, You J, Zhang C, Xian Y. Ultrasensitive detection of tumor-derived small extracellular vesicles based on nonlinear hybridization chain reaction fluorescence signal amplification and immunomagnetic separation. Analyst. 2022;147(9):1859–65.

    CAS  PubMed  Google Scholar 

  61. Sun S, Yang S, Hu X, Zheng C, Song H, Wang L, et al. Combination of immunomagnetic separation with aptamer-mediated double rolling circle amplification for highly sensitive circulating tumor cell detection. ACS Sens. 2020;5(12):3870–8.

    CAS  PubMed  Google Scholar 

  62. Huang R, He L, Li S, Liu H, Jin L, Chen Z, et al. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification. Nanoscale. 2020;12(4):2445–51.

    CAS  PubMed  Google Scholar 

  63. He L, Yu X, Huang R, Jin L, Liu Y, Deng Y, et al. A novel specific and ultrasensitive method detecting extracellular vesicles secreted from lung cancer by padlock probe-based exponential rolling circle amplification. Nano Today. 2022;42: 101334.

    CAS  Google Scholar 

  64. Gao ML, He F, Yin BC, Ye BC. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. Analyst. 2019;144(6):1995–2002.

    CAS  PubMed  Google Scholar 

  65. Li F, Zhou Y, Yin H, Ai S. Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs. Biosens Bioelectron. 2020;166: 112476.

    CAS  PubMed  Google Scholar 

  66. Miao P, Tang Y. Dumbbell hybridization chain reaction based electrochemical biosensor for ultrasensitive detection of exosomal miRNA. Anal Chem. 92 (17):12026–12032.

  67. Tabata M, Miyahara Y. Liquid biopsy in combination with solid-state electrochemical sensors and nucleic acid amplification. J Mater Chem B. 2019;7(43):6655–69.

    CAS  PubMed  Google Scholar 

  68. Miao P, Tang Y. Gold nanoparticles-based multipedal DNA walker for ratiometric detection of circulating tumor cell. Anal Chem. 91 (23):15187–15192.

  69. Zhou M, Li C, Wang B, Huang L. Rapid and sensitive leukemia-derived exosome quantification via nicking endonuclease-assisted target recycling. Anal Methods. 2021;13(35):4001–7.

    CAS  PubMed  Google Scholar 

  70. Huang L, Wang DB, Singh N, Yang F, Gu N, Zhang XE. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale. 2018;10(43):20289–95.

    CAS  PubMed  Google Scholar 

  71. Li Z, Wang G, Shen Y, Guo N, Ma N. DNA-templated magnetic nanoparticle-quantum dot polymers for ultrasensitive capture and detection of circulating tumor cells. Adv Funct Mater. 2018;28(14):1707152.

    Google Scholar 

  72. Chen H, Luo D, Shang B, Cao J, Wei J, Chen Q, et al. Immunoassay-type biosensor based on magnetic nanoparticle capture and the fluorescence signal formed by horseradish peroxidase catalysis for tumor-related exosome determination. Mikrochim Acta. 2020;187(5):282.

    CAS  PubMed  Google Scholar 

  73. He F, Wang J, Yin BC, Ye BC. Quantification of exosome based on a copper-mediated signal amplification strategy. Anal Chem. 2018;90(13):8072–9.

    CAS  PubMed  Google Scholar 

  74. Tan J, Yang N, Hu Z, Su J, Zhong J, Yang Y, et al. Aptamer-functionalized fluorescent silica nanoparticles for highly sensitive detection of leukemia cells. Nanoscale Res Lett. 2016;11.298.

  75. Wang Z, Sun N, Liu H, Chen C, Ding P, Yue X, et al. High-efficiency isolation and rapid identification of heterogeneous circulating tumor cells (CTCs) using dual-antibody-modified fluorescent-magnetic nanoparticles. Acs Appl Mater. 2019;11(43):39586–93.

    CAS  Google Scholar 

  76. Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. Nano Converg. 2021;8:13.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Arshad F, Nabi F, Iqbal S, Khan RH. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf B. 2022;212.112356.

  78. Pourmadadi M, Dinani HS, Tabar FS, Khassi K, Janfaza S, Tasnim N, et al. Properties and applications of graphene and its derivatives in biosensors for cancer detection: a comprehensive review. Biosensors. 2022;12(5):269.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu CH, Li J, Lin MH, Wang YW, Yang HH, Chen X, et al. Amplified aptamer-based assay through catalytic recycling of the analyte. Angew. 2010;49(45):8454–7.

    CAS  Google Scholar 

  80. Wang H, Chen H, Huang Z, Li T, Deng A, Kong J. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta. 2018;184:219–26.

    CAS  PubMed  Google Scholar 

  81. Jin D, Yang F, Zhang Y, Liu L, Zhou Y, Wang F, et al. ExoAPP: exosome-oriented, aptamer nanoprobe-enabled surface proteins profiling and detection. Anal Chem. 2018;90(24):14402–11.

    CAS  PubMed  Google Scholar 

  82. Xiao K, Liu J, Chen H, Zhang S, Kong J. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Biosens Bioelectron. 2017;91:76–81.

    CAS  PubMed  Google Scholar 

  83. Li B, Pan W, Liu C, Guo J, Shen J, Feng J, et al. Homogenous magneto-fluorescent nanosensor for tumor-derived exosome isolation and analysis. ACS Sens. 2020;5(7):2052–60.

    CAS  PubMed  Google Scholar 

  84. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Daniel V, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133(17):6825–31.

    CAS  PubMed  Google Scholar 

  85. Zhang H, Zhang H, Aldalbahi A, Zuo X, Fan C, Mi X. Fluorescent biosensors enabled by graphene and graphene oxide. Biosens Bioelectron. 2017;89:96–106.

    CAS  PubMed  Google Scholar 

  86. Wang L, Pan Y, Liu Y, Sun Z, Huang Y, Li J, et al. Fabrication of an aptamer-coated liposome complex for the detection and profiling of exosomes based on terminal deoxynucleotidyl transferase-mediated signal amplification. ACS Appl Mater Inter. 2020;12(1):322–9.

    CAS  Google Scholar 

  87. Zhang J, Zhu Y, Shi J, Zhang K, Zhang Z, Zhang H. Sensitive signal amplifying a diagnostic biochip based on a biomimetic periodic nanostructure for detecting dancer exosomes. ACS Appl Mater Inter. 2020;12(30):33473–82.

    CAS  Google Scholar 

  88. Ding C, Zhang C, Cheng S, Xian Y. Multivalent aptamer functionalized Ag2S nanodots/hybrid cell membrane-coated magnetic nanobioprobe for the ultrasensitive isolation and detection of circulating tumor cells. Adv Funct Mater. 2020;30(16):1909781.

    CAS  Google Scholar 

  89. Sforzi J, Palagi L, Aime S. Liposome-based bioassays. Biology. 2020;9(8):202.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang L, Yang Y, Liu Y, Ning L, Xiang Y, Li G. Bridging exosome and liposome through zirconium-phosphate coordination chemistry: a new method for exosome detection. Chem Commun. 2019;55(18):2708–11.

    CAS  Google Scholar 

  91. Zhang L, Gu C, Wen J, Liu G, Liu H, Li L. Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem. 2021;413(1):83–102.

    CAS  PubMed  Google Scholar 

  92. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763–75.

    CAS  PubMed  Google Scholar 

  93. Liang Z, Khawar MB, Liang J, Sun H. Bio-conjugated quantum dots for cancer research: detection and imaging. Front Oncol. 2021;11: 749970.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu LL, Tang M, Zhang ZL, Qi CB, Hu J, Ma XY, et al. Chip-assisted single-cell biomarker profiling of heterogeneous circulating tumor cells using multifunctional nanospheres. Anal Chem. 2018;90(17):10518–26.

    CAS  PubMed  Google Scholar 

  95. Lei J, Ju H. Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev. 2012;41(6):2122–34.

    CAS  PubMed  Google Scholar 

  96. Safarpour H, Dehghani S, Nosrati R, Zebardast N, Alibolandi M, Mokhtarzadeh A, et al. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosen Bioelectron. 2020;148.111833.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22274054, 21974050, and 11727810), the Natural Science Foundation of Shanghai (20ZR1418000), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiling Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Tan, W., Cheng, S. et al. Nucleic acid and nanomaterial-assisted signal-amplified strategies in fluorescent analysis of circulating tumor cells and small extracellular vesicles. Anal Bioanal Chem 415, 3769–3787 (2023). https://doi.org/10.1007/s00216-022-04509-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04509-2

Keywords

Navigation