Skip to main content
Log in

High-throughput platforms for microextraction techniques

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The proposal of high-throughput platforms in microextraction-based approaches is important to offer sustainable and efficient tools in analytical chemistry. Particularly, automated configurations exhibit enormous potential because they provide accurate and precise results in addition to less analyst intervention. Recently, significant achievements have been obtained in proposing affordable platforms for microextraction techniques capable of being integrated with different analytical instrumentations. Considering the evolution of these approaches, this article describes innovative high-throughput platforms that have recently been proposed for the analysis of varied matrices, with special attention to laboratory-made devices. Additionally, some challenges, opportunities, and trends regarding these experimental workflows are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wojnowski W, Tobiszewski M, Pena-Pereira F, Psillakis E. AGREEprep – analytical greenness metric for sample preparation. TrAC Trends in Anal Chem. 2022;149:116553. https://doi.org/10.1016/j.sampre.2022.100025.

    Article  CAS  Google Scholar 

  2. Rodriguez-Mozaz S, Alda MJL, Barceló D. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J Chromatogr A. 2007;1152:97–115. https://doi.org/10.1016/j.chroma.2007.01.046.

    Article  CAS  PubMed  Google Scholar 

  3. López-Lorente AI, Pena-Pereira F, Pedersen-Bjergaard S, Zuin VG, Ozkan SA, Psillakis E. The ten principles of green sample preparation. TrAC – Trends Anal Chem. 2022;148:116530. https://doi.org/10.1016/j.trac.2022.116530.

    Article  CAS  Google Scholar 

  4. Merib J. The potential of automated strategies in microextraction procedures coupled to chromatographic techniques. LCGC North Am. 2021;39:15–7.

    Google Scholar 

  5. Millán-Santiago J, Lucena R, Cárdenas S. Pre-cleaned bare wooden toothpicks for the determination of drugs in oral fluid by mass spectrometry. Anal Bioanal Chem. 2022;414:5287–96. https://doi.org/10.1007/s00216-022-03977-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nowak PM, Wietecha-Posłuszny R, Pawliszyn J. White Analytical Chemistry: an approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC - Trends Anal Chem. 2021;138:116223. https://doi.org/10.1016/j.trac.2021.116223.

    Article  CAS  Google Scholar 

  7. Medina DAV, Cabal LFR, Lanças FM, Santos-Neto AJ. Sample treatment platform for automated integration of microextraction techniques and liquid chromatography analysis. HardwareX. 2019;6:e00056. https://doi.org/10.1016/j.ohx.2019.e00056.

    Article  Google Scholar 

  8. Hutchinson JP, Setkova L, Pawliszyn J. Automation of solid-phase microextraction on a 96-well plate format. J Chromatogr A. 2007;1149:127–37. https://doi.org/10.1016/j.chroma.2007.02.117.

    Article  CAS  PubMed  Google Scholar 

  9. Arthur C, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem. 1990;62:2145–8. https://doi.org/10.1021/ac00218a019.

    Article  CAS  Google Scholar 

  10. Bruheim I, Liu X, Pawliszyn J. Thin-film microextraction. Anal Chem. 2003;75:1002–10. https://doi.org/10.1021/ac026162q.

    Article  CAS  PubMed  Google Scholar 

  11. Xie W, Mullett W, Pawliszyn J. High-throughput polymer monolith in-tip SPME fiber preparation and application in drug analysis. Bioanalysis. 2011;3:2613–25. https://doi.org/10.4155/bio.11.267.

    Article  CAS  PubMed  Google Scholar 

  12. Kasperkiewicz A, Gómez-Ríos GA, Hein D, Pawliszyn J. Breaching the 10 second barrier of total analysis time for complex matrices via automated coated blade spray. Anal Chem. 2019;91:13039–46. https://doi.org/10.1021/acs.analchem.9b03225.

    Article  CAS  PubMed  Google Scholar 

  13. Roy KS, Nazdrajić E, Shimelis OI, Ross MJ, Chen Y, Cramer H, Pawliszyn J. Optimizing a high-throughput solid-phase microextraction system to determine the plasma protein binding of drugs in human plasma. Anal Chem. 2021;93:11061–5. https://doi.org/10.1021/acs.analchem.1c01986.

    Article  CAS  PubMed  Google Scholar 

  14. Carmo SN, Merib J, Dias AN, Stolberg S, Budziak D, Carasek E. A low-cost biosorbent-based coating for the highly sensitive determination of organochlorine pesticides by solid-phase microextraction and gas chromatography-electron capture detection. J Chromatogr A. 2017;1525:23–31. https://doi.org/10.1016/j.chroma.2017.10.018.

    Article  CAS  PubMed  Google Scholar 

  15. Morés L, Dias AN, Carasek E. Development of a high-throughput method based on thin-film microextraction using a 96-well plate system with a cork coating for the extraction of emerging contaminants in river water samples. J Sep Sci. 2018;41:697–703. https://doi.org/10.1002/jssc.201700774.

    Article  CAS  PubMed  Google Scholar 

  16. Carmo SN, Merib J, Carasek E. Bract as a novel extraction phase in thin-film SPME combined with 96-well plate system for the high-throughput determination of estrogens in human urine by liquid chromatography coupled to fluorescence detection. J Chromatogr B. 2019;1118–1119:17–24. https://doi.org/10.1016/j.jchromb.2019.04.037.

    Article  CAS  Google Scholar 

  17. Kirchner N, Dias AN, Budziak D, Silveira CB, Merib J, Carasek E. Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system. Anal Chim Acta. 2017;996:29–37. https://doi.org/10.1016/j.aca.2017.09.047.

    Article  CAS  Google Scholar 

  18. Trujillo-Rodríguez MJ, Pacheco-Fernández I, Taima-Mancera I, Díaz JHA, Pino V. Evolution and current advances in sorbent-based microextraction configurations. J Chromatogr A. 2020;1634:461670. https://doi.org/10.1016/j.chroma.2020.461670.

    Article  CAS  PubMed  Google Scholar 

  19. Safaei M, Foroughi MM, Ebrahimpoo N, Jahani S, Omidi A, Khatami M. A review on metal-organic frameworks: synthesis and applications. TrAC Trends in Anal Chem. 2019;118:401–25. https://doi.org/10.1016/j.trac.2019.06.007.

    Article  CAS  Google Scholar 

  20. Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y. Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications. Front Chem. 2021;9:629054. https://doi.org/10.3389/fchem.2021.629054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DelBruno JJ. Molecularly imprinted polymers. Chem Rev. 2019;119:94–119. https://doi.org/10.1021/acs.chemrev.8b00171.

    Article  CAS  Google Scholar 

  22. Kołodziej D, Sobczak L, Goryński K. Polyamide noncoated device for adsorption-based microextraction and novel 3D printed thin-film microextraction supports. Anal Chem. 2022;94:2764–71. https://doi.org/10.1021/acs.analchem.1c03672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wells SS, Kennedy R. High-throughput liquid−liquid extractions with nanoliter volumes. Anal Chem. 2020;92:3189–97. https://doi.org/10.1021/acs.analchem.9b04915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pedersen-Bjergaard S, Rasmussen KE. Liquid− liquid− liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal Chem. 1999;71:2650–6. https://doi.org/10.1021/ac990055n.

    Article  CAS  PubMed  Google Scholar 

  25. Mafra G, Birk L, Scheid C, Eller S, Brognoli R, Oliveira TF, Carasek E, Merib J. A straightforward and semiautomated membrane-based method as efficient tool for the determination of cocaine and its metabolites in urine samples using liquid chromatography coupled to quadrupole time-of-flight-mass spectrometry. J Chromatogr A. 2020;1621:461088. https://doi.org/10.1016/j.chroma.2020.461088.

    Article  CAS  PubMed  Google Scholar 

  26. Morelli DC, Bernardi G, Morés L, Pierri ME, Carasek E. A green - high throughput –extraction method based on hydrophobic natural deep eutectic solvent for the determination of emerging contaminants in water by high performance liquid chromatography – diode array detection. J Chromatogr A. 2020;1626:461377. https://doi.org/10.1016/j.chroma.2020.461377.

    Article  CAS  PubMed  Google Scholar 

  27. Bouchouareb K, Combès A, Pichon V. Determination of nerve agent biomarkers in human urine by a natural hydrophobic deep eutectic solvent-parallel artificial liquid membrane extraction technique. Talanta. 2022;249:123704. https://doi.org/10.1016/j.talanta.2022.123704.

    Article  CAS  PubMed  Google Scholar 

  28. Pedersen-Bjergaard S, Rasmussen KE. Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J Chromatogr A. 2006;1109:183–90. https://doi.org/10.1016/j.chroma.2006.01.025.

    Article  CAS  PubMed  Google Scholar 

  29. Pedersen-Bjergaard S. Electromembrane extraction—looking into the future. Anal Bioanal Chem. 2019;411:1687–93. https://doi.org/10.1007/s00216-018-1512-x.

    Article  CAS  PubMed  Google Scholar 

  30. Carrasco-Correa EJ, Kubáň P, Cocovi-Solberg DJ, Miró M. Fully automated electric-field-driven liquid phase microextraction system with renewable organic membrane as a front end to high performance liquid chromatography. Anal Chem. 2019;91:10808–15. https://doi.org/10.1021/acs.analchem.9b02453.

    Article  CAS  Google Scholar 

  31. Medina DAV, Cabal LFR, Titato GM, Lanças FM, Santos-Neto AJ. Automated online coupling of robot-assisted single drop microextraction and liquid chromatography. J Chromatogr A. 2019;1595:66–72. https://doi.org/10.1016/j.chroma.2019.02.036.

    Article  CAS  PubMed  Google Scholar 

  32. Bocelli MD, Medina DAV, Rodriguez JPG, Lanças FM, Santos-Neto AJ. Determination of parabens in wastewater samples via robot-assisted dynamic single-drop microextraction and liquid chromatography–tandem mass spectrometry. Electrophoresis. 2022;43:1567–76. https://doi.org/10.1002/elps.202100390.

    Article  CAS  PubMed  Google Scholar 

  33. Abdel-Rehim M. Microextraction by packed sorbent (MEPS): a tutorial. Anal Chim Acta. 2011;701:119–28. https://doi.org/10.1016/j.aca.2011.05.037.

    Article  CAS  PubMed  Google Scholar 

  34. Lafay F, Vulliet E, Flament-Waton MM. Contribution of microextraction in packed sorbent for the analysis of cotinine in human urine by GC–MS. Anal Bioanal Chem. 2010;396:937–41. https://doi.org/10.1007/s00216-009-3236-4.

    Article  CAS  PubMed  Google Scholar 

  35. Abdel-Rehim M, Altun Z, Blomberg L. Microextraction in packed syringe (MEPS) for liquid and gas chromatographic applications Part — II determination of ropivacaine and its metabolites in human plasma samples using MEPS with liquid chromatography/tandem mass spectrometry. J Mass Spectrom. 2004;39:1488–93. https://doi.org/10.1002/jms.731.

    Article  CAS  PubMed  Google Scholar 

  36. Sartore DM, Medina DAV, Costa JL, Lanças FM, Santos-Neto AJ. Automated microextraction by packed sorbent of cannabinoids from human urine using a lab-made device packed with molecularly imprinted polymer. Talanta. 2020;219:121185. https://doi.org/10.1016/j.talanta.2020.121185.

    Article  CAS  PubMed  Google Scholar 

  37. Kataoka EM, Murer RC, Santos JM, Carvalho RM, Eberlin MN, Augusto F, Poppi RJ, Gobbi AL, Hantao LW. Simple, expendable, 3D-printed microfluidic systems for sample preparation of petroleum. Anal Chem. 2017;89:3460–7. https://doi.org/10.1021/acs.analchem.6b04413.

    Article  CAS  PubMed  Google Scholar 

  38. Cocovi-Solberg DJ, Rosende M, Michale M, Miró M. 3D printing: the second dawn of lab-on-valve fluidic platforms for automatic (bio)chemical assays. Anal Chem. 2019;91:1140–9. https://doi.org/10.1021/acs.analchem.8b04900.

    Article  CAS  PubMed  Google Scholar 

  39. Merib J, Spudeit DA, Corazza G, Carasek E, Anderson JL. Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection. Anal Bioanal Chem. 2018;410:4689–99. https://doi.org/10.1007/s00216-017-0823-7.

    Article  CAS  PubMed  Google Scholar 

  40. Varona M, Eor P, Neto LCF, Merib J, Anderson JL. Metal-containing and magnetic ionic liquids in analytical extractions and gas separations. TrAC – Trends Anal Chem. 2022;140:116275. https://doi.org/10.1016/j.trac.2021.116275.

    Article  CAS  Google Scholar 

  41. Farooq MQ, Tryon-Tasson N, Biswas A, Anderson JL. Preparation of ternary hydrophobic magnetic deep eutectic solvents and an investigation into their physicochemical properties. J Mol Liquids. 2022;365:120000. https://doi.org/10.1016/j.molliq.2022.120000.

    Article  CAS  Google Scholar 

  42. Andrade DC, Monteiro SA, Merib J. A review on recent applications of deep eutectic solvents in microextraction techniques for the analysis of biological matrices. Adv Sample Prep. 2022;1:100007. https://doi.org/10.1016/j.sampre.2022.100007.

    Article  Google Scholar 

  43. Mafra G, Vieira AA, Merib J, Anderson JL, Carasek E. Single drop microextraction in a 96-well plate format: a step toward automated and high-throughput analysis. Anal Chim Acta. 2019;1063:159–66. https://doi.org/10.1016/j.aca.2019.02.013.

    Article  CAS  PubMed  Google Scholar 

  44. Mafra G, Will C, Huelsmann R, Merib J, Carasek E. A proof-of-concept of parallel single-drop microextraction for the rapid and sensitive biomonitoring of pesticides in urine. J Sep Sci. 2021;44:1961–8. https://doi.org/10.1002/jssc.202001157.

    Article  CAS  PubMed  Google Scholar 

  45. Will C, Huelsmann RD, Mafra G, Merib J, Anderson JL, Carasek E. High-throughput approach for the in situ generation of magnetic ionic liquids in parallel-dispersive droplet extraction of organic micropollutants in aqueous environmental samples. Talanta. 2021;223:121759. https://doi.org/10.1016/j.talanta.2020.121759.

    Article  CAS  PubMed  Google Scholar 

  46. Belka M, Konieczna L, Okonska M, Pyszka M, Ulenberg S, Baczek T. Application of 3D-printed scabbard-like sorbent for sample preparation in bioanalysis expanded to 96-well plate high-throughput format. Anal Chim Acta. 2019;1081:1–5. https://doi.org/10.1016/j.aca.2019.05.078.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author is grateful to the Brazilian governmental agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) grant number 21/2551–0000671-4 for the financial support that made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josias Merib.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merib, J. High-throughput platforms for microextraction techniques. Anal Bioanal Chem 415, 3671–3681 (2023). https://doi.org/10.1007/s00216-022-04504-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04504-7

Keywords

Navigation