Skip to main content
Log in

Electrodeposition of dopamine onto carbon fiber microelectrodes to enhance the detection of Cu2+ via fast-scan cyclic voltammetry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The etiology of neurodegenerative diseases is poorly understood; however, studies have shown that heavy metals, such as copper, play a critical role in neurotoxicity, thus, adversely affecting the development of these diseases. Because of the limitations associated with classical metal detection tools to obtain accurate speciation information of ultra-low concentrations of heavy metals in the brain, analysis is primarily performed in blood, urine, or postmortem tissues, limiting the translatability of acquired knowledge to living systems. Inadequate and less accurate data obtained with such techniques provide little or no information for developing efficient therapeutics that aid in slowing down the deterioration of brain cells. In this study, we developed a biocompatible, ultra-fast, low-cost, and robust surface-modified electrode with carbon fibers by electrodepositing dopamine via fast-scan cyclic voltammetry (FSCV) to detect Cu2+ in modified tris buffer. We studied the surface morphology of our newly introduced sensors using high-resolution images by atomic force microscopy under different deposition conditions. The limit of detection (LOD) of our surface-modified sensor was 0.01 µM (0.64 ppb), and the sensitivity was 11.28 nA/µM. The LOD and sensitivity are fifty and two times greater, respectively, compared to those of a bare electrode. The sensor’s response is not affected by the presence of dopamine in the matrix. It also exhibited excellent stability to multiple subsequent injections and repeated measurements of Cu2+ over a month, thus showing its strength to be developed into an accurate, fast, robust electrochemical tool to monitor ultra-low concentrations of heavy metals in the brain in real time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohammadi MR, Salmanian M, Keshavarzi Z. The global prevalence of conduct disorder: A systematic review and meta-analysis. Iran J Psychiatry. 2021;16:205–225. https://doi.org/10.18502/ijps.v16i2.5822.

  2. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer’s Dement. 2013;9:63–75.

    Article  Google Scholar 

  3. Kovacs GG. Molecular pathology of neurodegenerative diseases: Principles and practice. J Clin Pathol. 2019;72:725–35. https://doi.org/10.1136/jclinpath-2019-205952.

    Article  CAS  PubMed  Google Scholar 

  4. Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: An overview of environmental risk factors. Environ Health Perspect. 2005;113:1250–6. https://doi.org/10.1289/ehp.7567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Checkoway H, Lundin JI, Kelada SN. Neurodegenerative diseases. IARC Sci Publ 2011;407–419.

  6. Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr Neuropharmacol. 2020;18:1106–25. https://doi.org/10.2174/1570159x18666200528142429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sindi S, Mangialasche F, Kivipelto M. Advances in the prevention of Alzheimer’s disease. F1000Prime Rep 2015;7. https://doi.org/10.12703/P7-50.

  8. Murphy MP, LeVine H 3rd. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19:311–23.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singh I, Sagare AP, Coma M, Perlmutter D, Gelein R, Bell RD, Deane RJ, Zhong E, Parisi M, Ciszewski J, Kasper RT, Deane R. Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proc Natl Acad Sci U S A. 2013;110:14771–6. https://doi.org/10.1073/pnas.1302212110.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crimi E, Sica V, Williams-Ignarro S, Zhang H, Slutsky AS, Ignarro LJ, Napoli C. The role of oxidative stress in adult critical care. Free Radic Biol Med. 2006;40:398–406. https://doi.org/10.1016/j.freeradbiomed.2005.10.054.

    Article  CAS  PubMed  Google Scholar 

  11. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450–64. https://doi.org/10.1016/j.redox.2017.10.014.

    Article  CAS  PubMed  Google Scholar 

  12. Ogunfowokan AO, Adekunle AS, Oyebode BA, Oyekunle JAO, Komolafe AO, Omoniyi-Esan GO. Determination of heavy metals in urine of patients and tissue of corpses by atomic absorption spectroscopy. Chem Africa. 2019;2:699–712. https://doi.org/10.1007/s42250-019-00073-y.

    Article  CAS  Google Scholar 

  13. Luo Y, Ronk M, Joubert MK, Semin D, Nashed-Samuel Y. Determination of interactions between antibody biotherapeutics and copper by size exclusion chromatography (SEC) coupled with inductively coupled plasma mass spectrometry (ICP/MS). Anal Chim Acta. 2019;1079:252–9. https://doi.org/10.1016/j.aca.2019.06.047.

    Article  CAS  PubMed  Google Scholar 

  14. Guo Y, Wang Z, Qu W, Shao H, Jiang X. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron. 2011;26:4064–9. https://doi.org/10.1016/j.bios.2011.03.033.

    Article  CAS  PubMed  Google Scholar 

  15. Bucher ES, Wightman RM. Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem. 2015;8:239–61. https://doi.org/10.1146/annurev-anchem-071114-040426.

    Article  CAS  Google Scholar 

  16. Li Y, Weese ME, Cryan MT, Ross AE. Amine-functionalized carbon-fiber microelectrodes for enhanced ATP detection with fast-scan cyclic voltammetry. Anal Methods. 2021;13:2320–30. https://doi.org/10.1039/d1ay00089f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Puthongkham P, Venton BJ. Nanodiamond coating improves the sensitivity and antifouling properties of carbon fiber microelectrodes. ACS Sensors. 2019;4:2403–11. https://doi.org/10.1021/acssensors.9b00994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science (80- ) 2007;318:426–430. https://doi.org/10.1126/science.1147241.

  19. Waite JH. Mussel adhesion–essential footwork. J Exp Biol. 2017;220:517–30.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu H, Zhao C, Lin K, Wang X. Mussel-inspired polydopamine-based multilayered coatings for enhanced bone formation. Front Bioeng Biotechnol 2022;10. https://doi.org/10.3389/fbioe.2022.952500.

  21. Ma Z, Jia X, Hu J, Liu Z, Wang H, Zhou F. Mussel-inspired thermosensitive polydopamine-graft-poly (N-isopropylacrylamide) coating for controlled-release fertilizer. J Agric Food Chem. 2013;61:12232–7.

    Article  CAS  PubMed  Google Scholar 

  22. Li D, Luo L, Pang Z, Ding L, Wang Q, Ke H, Huang F, Wei Q. Novel phenolic biosensor based on a magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite. ACS Appl Mater Interfaces. 2014;6:5144–51. https://doi.org/10.1021/am500375n.

    Article  CAS  PubMed  Google Scholar 

  23. Hanssen BL, Siraj S, Wong DKY. Recent strategies to minimise fouling in electrochemical detection systems. Rev Anal Chem. 2016;35:1–28. https://doi.org/10.1515/revac-2015-0008.

    Article  CAS  Google Scholar 

  24. Peltola E, Sainio S, Holt KB, Palomäki T, Koskinen J, Laurila T. Electrochemical fouling of dopamine and recovery of carbon electrodes. Anal Chem. 2018;90:1408–16. https://doi.org/10.1021/acs.analchem.7b04793.

    Article  CAS  PubMed  Google Scholar 

  25. Chang AY, Dutta G, Siddiqui S, Arumugam PU. Surface fouling of ultrananocrystalline diamond microelectrodes during dopamine detection: improving lifetime via electrochemical cycling. ACS Chem Neurosci. 2019;10:313–22. https://doi.org/10.1021/acschemneuro.8b00257.

    Article  CAS  PubMed  Google Scholar 

  26. Pathirathna P, Samaranayake S, Atcherley CW, Parent KL, Heien ML, Mc Elmurry SP, Hashemi P. Fast voltammetry of metals at carbon-fiber microelectrodes: copper adsorption onto activated carbon aids rapid electrochemical analysis. Analyst. 2014;139:4673–80. https://doi.org/10.1039/c4an00937a.

    Article  CAS  PubMed  Google Scholar 

  27. Roberts JG, Sombers LA. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond. Anal Chem. 2018;90:490–504. https://doi.org/10.1021/acs.analchem.7b04732.

    Article  CAS  PubMed  Google Scholar 

  28. McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ. In situ imaging of metals in cells and tissues. Chem Rev. 2009;109:4780–827. https://doi.org/10.1021/cr900223a.

    Article  CAS  PubMed  Google Scholar 

  29. Pathirathna P, Yang Y, Forzley K, McElmurry SP, Hashemi P. Fast-scan deposition-stripping voltammetry at carbon-fiber microelectrodes: real-time, subsecond, mercury free measurements of copper. Anal Chem. 2012. https://doi.org/10.1021/ac301358r.

    Article  PubMed  Google Scholar 

  30. Kaushik NK, Kaushik N, Pardeshi S, Sharma JG, Lee SH, Choi EH. Biomedical and clinical importance of mussel-inspired polymers and materials. Mar Drugs. 2015;13:6792–817. https://doi.org/10.3390/md13116792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dai X, Zhang M, Li J, Yang D. Effects of electrodeposition time on a manganese dioxide supercapacitor. RSC Adv. 2020;10:15860–9. https://doi.org/10.1039/d0ra01681k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho W, Liu F, Hendrix A, McCray B, Asrat T, Connaughton V, Zestos AG. Timed electrodeposition of PEDOT: nafion onto carbon fiber-microelectrodes enhances dopamine detection in Zebrafish retina. J Electrochem Soc. 2020;167: 115501. https://doi.org/10.1149/1945-7111/aba33d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Keller AL, Cryan MT, Ross AE. Metal nanoparticle modified carbon-fiber microelectrodes enhance adenosine triphosphate surface interactions with fast-scan cyclic voltammetry. ACS Meas Sci Au. 2022;2:96–105. https://doi.org/10.1021/acsmeasuresciau.1c00026.

    Article  CAS  PubMed  Google Scholar 

  34. Jalili N, Laxminarayana K. A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics. 2004;14:907–45. https://doi.org/10.1016/j.mechatronics.2004.04.005.

    Article  Google Scholar 

  35. Holmes J, Witt CE, Keen D, Buchanan AM, Batey L, Hersey M, Hashemi P. Glutamate electropolymerization on carbon increases analytical sensitivity to dopamine and serotonin: an auspicious in vivo phenomenon in mice? Anal Chem. 2021;93:10762–71. https://doi.org/10.1021/acs.analchem.0c04316.

    Article  CAS  PubMed  Google Scholar 

  36. Fitzgerald DJ. Safety guidelines for copper in water. Am J Clin Nutr. 1998;67:1098S-1102S.

    Article  CAS  PubMed  Google Scholar 

  37. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors - sensor principles and architectures. Sensors. 2008;8:1400–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavithra Pathirathna.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 253 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manring, N., Ahmed, M.M.N., Smeltz, J.L. et al. Electrodeposition of dopamine onto carbon fiber microelectrodes to enhance the detection of Cu2+ via fast-scan cyclic voltammetry. Anal Bioanal Chem 415, 4289–4296 (2023). https://doi.org/10.1007/s00216-022-04488-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04488-4

Keywords

Navigation