Skip to main content
Log in

Fingerprinting and identification of isolated plastic polymers with pyrolysis comprehensive two-dimensional gas chromatography and flame ionization detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An approach using pyrolysis with comprehensive two-dimensional gas chromatography with flame ionization detection is introduced for identifying common isolated plastic polymers. A quadrupole mass spectrometer is employed as a parallel detector to aid method development and improve polymer identification in complex matrices. Common plastic polymers including polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyamide, poly(methyl methacrylate), styrene-butadiene rubber, and polyethylene terephthalate are accurately identified within a total analysis time of 45 min. A strategy to enhance compatibility of high-resolution capillary gas chromatography using a 150-µm internal diameter column technology and a larger internal volume microfurnace–based pyrolyzer is discussed. This strategy resulted in minimizing the band broadening effect caused by the pyrolyzer’s internal volume and overcoming the slow pressure buildup when the sample is inserted into the furnace. Prolonged pressure buildup to reach a final pressure setting can cause a safety shutdown to the pneumatic control system. The developed approach is complementary to spectroscopic techniques by offering mass based, chemical composition analysis of plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gironi F, Piemonte V. Bioplastics and petroleum-based plastics: strengths and weaknesses. Energy Sources, Part A: Recovery, Utilization, Environ Effects. 2011;33:1949–59. https://doi.org/10.1080/15567030903436830.

    Article  CAS  Google Scholar 

  2. Echchakoui S, Barka N. Industry 40 and its impact in plastics industry: a literature review. J Ind Inf Integr. 2020;20:100172. https://doi.org/10.1016/j.jii.2020.100172.

    Article  Google Scholar 

  3. Paletta A, Filho WL, Balogun A, Foschi E, Bonoli A. Barriers and challenges to plastics valorization in the context of a circular economy: case studies from Italy. J Clean Prod. 2019;241:118149. https://doi.org/10.1016/j.jclepro.2019.118149.

    Article  Google Scholar 

  4. Lobo H, Bonilla JV. Handbook of plastic analysis. New York: Marcel Dekker; 2003.

    Book  Google Scholar 

  5. Thompson RN, Nau CA, Lawrence CH. Identification of vehicle tire rubber in roadway dust. Am Ind Hyg Assoc J. 1966;27:488–95. https://doi.org/10.1080/00028896609342461.

    Article  CAS  PubMed  Google Scholar 

  6. Renner G, Schmidt TC, Schram J. Analytical methodologies for monitoring micro(nano) plastics: which are fit for purpose? Curr Opin Environ Sci Health. 2018;1:55–61. https://doi.org/10.1016/j.coesh.2017.11.001.

    Article  Google Scholar 

  7. Primpke S, Lorenz C, Rascher-Friesenhausen R, Gerdts G. An automated approach for microplastics using focal plane array (FPA) FT-IR microscopy and image analysis. Anal Methods. 2017;9:1499–511. https://doi.org/10.1039/C6AY02476A.

    Article  CAS  Google Scholar 

  8. Cowger W, Gray A, Christiansen SH. Critical review of processing and classification techniques for images and spectra in microplastic research. Appl Spectrosc. 2020;74:989–1010. https://doi.org/10.1177/0003702820929064.

    Article  CAS  PubMed  Google Scholar 

  9. Collard F, Gilbert B, Eppe G, Parmentier E, Das K. Detection of anthropogenic particles in fish stomachs: an isolation method adapted to identification by Raman spectroscopy. Arch Environ Contam Toxicol. 2015;69:331–9. https://doi.org/10.1007/s00244-015-0221-0.

    Article  CAS  PubMed  Google Scholar 

  10. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026.

    Article  CAS  PubMed  Google Scholar 

  11. Wolff S, Kerpen J, Prediger J, Barkmann L, Muller L. Determination of the microplastics emission in the effluent of a municipal wastewater treatment plant using Raman microspectroscopy. Water Res X. 2019;2:100014. https://doi.org/10.1016/j.wroa.2018.100014.

    Article  CAS  PubMed  Google Scholar 

  12. Tsuge S, Okumoto T, Takeuchi T. Structural investigation of chlorinated polyethylenes by pyrolysis-gas chromatography. Macromolecules. 1969;2:200–2. https://doi.org/10.1021/ma60008a019.

    Article  CAS  Google Scholar 

  13. Tsuge S, Otani H, Watanabe C. Pyrolysis-GC/MS data book of synthetic polymers — pyrograms, thermograms, and MS of pyrolysates. Nederland: Elsevier; 2011.

    Google Scholar 

  14. Tsuge S, Takeuchi T. Vertical furnace-type sampling device for pyrolysis gas chromatography. Anal Chem. 1977;49:348–50. https://doi.org/10.1021/ac50010a044.

    Article  CAS  Google Scholar 

  15. Cauwenberghe LV, Devriese L, Galgani F, Robbens J, Janssen CR. Microplastics in sediments: a review of techniques, occurrence, and effects. Mar Environ Res. 2015;111:5–17. https://doi.org/10.1016/j.marenvres.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  16. de Leeuw JW, de Leer EWB, Sinninghe Damste JS, Schuyl PJW. Screening of anthropogenic compound in polluted sediments and soils by flash evaporation/pyrolysis GC-MS. Anal Chem. 1986;58:1852–7. https://doi.org/10.1021/ac00121a055.

    Article  Google Scholar 

  17. Fabbri D, Trombini C, Vassura I. Analysis of polystyrene in polluted sediments by pyrolysis gas chromatography mass spectrometry. J Chromatogr Sci. 1998;36:600–4. https://doi.org/10.1093/chromsci/36.12.600.

    Article  CAS  Google Scholar 

  18. Fabbri D. Use of pyrolysis-gas chromatography/mass spectrometry to study environmental pollution caused by synthetic polymers: a case study: the Ravenna Lagoon. J Anal Appl Pyrolysis. 2001;58–59:361–70. https://doi.org/10.1016/S0165-2370(00)00170-4.

    Article  Google Scholar 

  19. Guan X, Luong J, Yu Z, Jiang H. Quasi-stop-flow modulation strategy for comprehensive two-dimensional gas chromatography. Anal Chem. 2020;92:6251–6. https://doi.org/10.1021/acs.analchem.0c00814.

    Article  CAS  PubMed  Google Scholar 

  20. Biagini E, Lippi F, Tognotti L. Characterization of a lab-scale platinum filament pyrolyzer for studying the fast devolatilization of solid fuels. Fuel. 2006;85:2408–18. https://doi.org/10.1016/j.fuel.2006.06.002.

    Article  CAS  Google Scholar 

  21. Ericsson I. Influence of pyrolysis parameters on results in pyrolysis-gas chromatography. J Anal Appl Pyrol. 1985;8:73–86. https://doi.org/10.1016/0165-2370(85)80016-4.

    Article  CAS  Google Scholar 

  22. Wampler TP, Levy EJ. Reproducibility in pyrolysis: recent pyrolysis. J Anal Appl Pyrol. 1987;12:75–82. https://doi.org/10.1016/0165-2370(87)85058-1.

    Article  CAS  Google Scholar 

  23. Onishi A, Oguri N, Kim P. Development of a new injection system for Curie-point pyrolysis-gas chromatography. J Chromatogr Sci. 1993;31:380–3. https://doi.org/10.1093/chromsci/31.9.380.

    Article  CAS  Google Scholar 

  24. Buhler C, Simon W. Curie point pyrolysis gas chromatography. J Chromatogr Sci. 1970;8:323–9. https://doi.org/10.1093/chromsci/8.6.323.

    Article  CAS  Google Scholar 

  25. Buco S, Moragues M, Doumeng P, Noor A, Mille G. Analysis of polycyclic aromatic hydrocarbons in contaminated soil by Curie point pyrolysis coupled to gas chromatography-mass spectrometry, an alternative to conventional method. J Chromatogr A. 2004;1026:223–9. https://doi.org/10.1016/j.chroma.2003.11.065.

    Article  CAS  PubMed  Google Scholar 

  26. White RL. Microfurnace pyrolysis injector for capillary gas chromatography. J Anal Appl Pyrol. 1991;18:269–76. https://doi.org/10.1016/0165-2370(91)87007-9.

    Article  CAS  Google Scholar 

  27. Jeknavorian AA, Mabud MA, Barry EF, Litzau JJ. Novel pyrolysis-gas chromatography/mass spectrometric techniques for the characterization of chemical additives in Portland cement and concrete. J Anal Appl Pyrol. 1998;46:85–100. https://doi.org/10.1016/S0165-2370(98)00073-4.

    Article  CAS  Google Scholar 

  28. Pico Y, Barcelo D. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: focus on organic matter and microplastics. Trends Anal Chem. 2020;130:115964. https://doi.org/10.1016/j.trac.2020.115964.

    Article  CAS  Google Scholar 

  29. Hosaka A, Watanabe C, Tsuge S. Development of new “flow-through” sample cup for the vertical micro-furnace pyrolyzer to reduce undesirable secondary reactions and band broadening of resulting pyrolysates. J Anal Appl Pyrol. 2007;78:452–5. https://doi.org/10.1016/j.jaap.2006.09.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Drs. Naoko Akiya, Jaime Curtis-Fisk, Wayde Konze, Tonya Stockman, and Peilin Yang of Dow Chemical, Analytical Science, Core R&D are acknowledged for their encouragement and support. Drs. Grace Xiuhan Yang and Cristina Serrat, also of Dow, are acknowledged for their help in reviewing and preparing the manuscript. Ms. Poly de Minnows is acknowledged for being an inspiration to research in environmental science. Ms. Catherine Gelmini is acknowledged for her help with the graphics.

Funding

This project is partially funded by the Dow Internal 2022 Analytical Science Capability Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Jim Luong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Comprehensive 2D Chromatography with guest editors Peter Q. Tranchida and Luigi Mondello.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 227 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luong, J., Gras, R., Hua, Y. et al. Fingerprinting and identification of isolated plastic polymers with pyrolysis comprehensive two-dimensional gas chromatography and flame ionization detection. Anal Bioanal Chem 415, 2483–2492 (2023). https://doi.org/10.1007/s00216-022-04424-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04424-6

Keywords

Navigation