Skip to main content
Log in

Trimethylselenonium ion determination in human urine by high-performance liquid chromatography–hydride generation–atomic fluorescence spectrometry optimization of the hydride generation step

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work describes the intricacies of the determination of the trimethylselenonium ion (TMSe) in human urine via high-performance liquid chromatography–hydride generation–atomic fluorescence spectrometry (HPLC-HG-AFS). By definition, this technique requires that the separated TMSe can be online converted into a volatile compound. Literature data for the determination of TMSe via the hydride generation technique are contradictory; i.e., some authors claim that direct formation of volatile compounds is possible under reduction with NaBH4, whereas others reported that a digestion step is mandatory prior to conversion. We studied and optimized the conditions for online conversion by varying the mobile phase composition (pyridine, phosphate, and acetate), testing different reaction coils, and optimizing the hydride generation conditions, although technically no hydride (H2Se) is formed but a dimethylselenide (DMSe). The optimized conditions were used for the analysis of 64 urine samples of 16 (unexposed) volunteers and the determination of low amounts of TMSe (LOD = 0.2 ng mL−1). Total (specific gravity–corrected) selenium concentrations in the urine samples ranged from 7.9 ± 0.7 to 29.7 ± 5.0 ng mL−1 for individual volunteers. Four volunteers were characterized as TMSe producers (hINMT genotype GA) and 12 were non-producers (hINMT genotype GG). Urine of TMSe producers contained 2.5 ± 1.7 ng mL−1 of TMSe, compared to 0.2 ± 0.2 ng mL−1 for non-producers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ganther HE, Kraus RJ, Foster SJ. Trimethylselenonium ion, sulfur and sulfur amino acids. Meth Enzymol. 1987;143:195–201.

    Article  CAS  Google Scholar 

  2. Suzuki KT, Kurasaki K, Okazaki N, Ogra Y. Selenosugar and trimethylselenonium among urinary Se metabolites: dose- and age-related changes. Toxicol Appl Pharmacol. 2005; 206 https://doi.org/10.1016/j.taap.2004.10.018

  3. Jäger T, Drexler H, Göen T. Human metabolism and renal excretion of selenium compounds after oral ingestion of sodium selenite and selenized yeast dependent on the trimethylselenium ion (TMSe) status. Arch Toxicol. 2016. https://doi.org/10.1007/s00204-015-1548-z.

    Article  Google Scholar 

  4. Juresa D, Blanusa A, Francesconi KA, Kienzl N, Kuehnelt D. Biological availability of selenosugars in rats. Chem Biol Interact. 2007. https://doi.org/10.1016/j.cbi.2007.04.009.

    Article  Google Scholar 

  5. Moreno P, Quijano MA, Guttiérez AM, Pérez-Conde MC, Cámara C. Study of selenium species distribution in biological tissues by size exclusion and ion exchange chromatography inductively coupled plasma-mass spectrometry. Anal Chim Acta. 2004. https://doi.org/10.1016/j.aca.2004.02.029.

    Article  Google Scholar 

  6. Kuehnelt D, Juresa D, Kienzl N, Francesconi KA. Marked individual variability in the levels of trimethylselenonium ion in human urine determined by HPLC/ICPMS and HPLC/vapor generation/ICPMS. Anal Bioanal Chem. 2006. https://doi.org/10.1007/s00216-006-0848-9.

    Article  Google Scholar 

  7. Kuehnelt D, Engström K, Skröder H, Kokarnig S, Schlebusch C, Kippler M, Alhamdow A, Nermell B, Francesconi KA, Broberg K, Vahter M. Selenium metabolism to the trimethylselenonium ion (TMSe) varies markedly because of polymorphisms in the indolethylamine N-methyltransferase gene. Am J Clin Nutr. 2015. https://doi.org/10.3945/ajcn.115.114157.

    Article  Google Scholar 

  8. Lajin B, Kuehnelt D, Jensen KB, Francesconi KA. Investigating the intra-individual variability in the human metabolic profile of urinary selenium. J Trace Elem Med Biol. 2016. https://doi.org/10.1016/j.jtemb.2016.06.008.

    Article  Google Scholar 

  9. Maher W, Krikowa F, Foster S. Decomposition of six common selenium species found in animal tissues using microwave digestion with nitric acid and ICP-MS. Microchem J. 2016. https://doi.org/10.1016/j.microc.2015.11.009.

    Article  Google Scholar 

  10. Li F, Goessler W, Irgolic KJ. Optimization of microwave digestion for determination of selenium in human urine by flow injection-hydride generation-atomic absorption spectrometry. Anal Commun. 1998;35:361–4.

    Article  CAS  Google Scholar 

  11. Hildebrand J, Greiner A, Drexler H, Goen T. Determination of eleven small selenium species in human urine by chromatographic-coupled ICP-MS methods. J Trace Elem Med Biol. 2020. https://doi.org/10.1016/j.jtemb.2020.126519.

    Article  Google Scholar 

  12. Delafiori AJ, Ring G, Furey A. Clinical applications of HPLC–ICP-MS element speciation: a review. Talanta. 2016. https://doi.org/10.1016/j.talanta.2016.02.035.

    Article  Google Scholar 

  13. Gammelgaard B, Jons O. Determination of selenium in urine by inductively coupled plasma mass spectrometry: interferences and optimization. J Anal At Spectrom. 1999;14:867–74.

    Article  CAS  Google Scholar 

  14. Blais JS, Huyghuesdespointes A, Momplaisir GM, Marshall WD. High-performance liquid-chromatography atomic-absorption spectrometry interface for the determination of selenoniocholine and trimethylselenonium cations - application to human urine. J Anal At Spectrom. 1991;6:225–32.

    Article  CAS  Google Scholar 

  15. Chatterjee A, Shibata Y, Yoneda M, Banerjee R, Uchida M, Kon H, Morita M. Identification of volatile selenium compounds produced in the hydride generation system from organoselenium compounds. Anal Chem. 2001;73:3181–6.

    Article  CAS  Google Scholar 

  16. D’Ulivo A, Lampugnani L, Sfetsios I, Zamboni R. Studies on total selenium determination in biological samples by hydride generation nondispersive atomic fluorescence spectrometry after hydrobromic acid bromine wet digestion. Spectrochim Acta Part B. 1993;48:387–96.

    Article  Google Scholar 

  17. D’Ulivo A, Lampugnani L, Sfetsios I, Zamboni R, Forte C. Studies on the breakdown of organoselenium compounds in a hydrobromic acid bromine digestion system. Analyst. 1994;119:633–40.

    Article  Google Scholar 

  18. Gómez MM, Gasparic T, Palacios MA, Camara C. Determination of five selenium compounds in urine by liquid chromatography with focused microwave assisted digestion and hydride generation-atomic absorption spectrometric detection. Anal Chim Acta. 1998;374:241–51.

    Article  Google Scholar 

  19. Cobo-Fernández MG, Palacios MA, Chakraborti D, Quevauviller P, Cámara C. On line speciation of Se(VI) and Se(IV), and trimethylselenium by HPLC-microvawe oven-hydride generation-atomic absorption spectrometry. Fresenius J Anal Chem. 1995;351:438–42.

    Article  Google Scholar 

  20. Zhang YQ, Frankenberg WT. Speciation of selenium in plant water extracts by ion exchange chromatography-hydride generation atomic absorption spectrometry. Sci Tot Environ. 2001. https://doi.org/10.1016/S0048-9697(00)00809-3.

    Article  Google Scholar 

  21. Chatterjee A, Irgolic KJ. Behaviour of selenium compounds in FI-HG-AAS. Anal Commun. 1998;35:337–40.

    Article  CAS  Google Scholar 

  22. Chatterjee A, Shibata Y. Determination of trimethylselenonium ion by flow injection hydride generation atomic absorption spectrometry. Anal Chim Acta. 1999;398:273–8.

    Article  CAS  Google Scholar 

  23. Zhao QX, Chen YW, Montaut S, Joly HA, Wang M, Belzile N. Synthesis, identification and chemical features of high-purity trimethylselenonium iodide. J Sulfur Chem. 2010; https://doi.org/10.1080/17415993.2010.516435

  24. Eichler Š, Kaňa A, Kalousová M, Vosmanská M, Korotvička M, Zima T, Mestek O. Speciation analysis of selenium in human urine by liquid chromatography and inductively coupled plasma mass spectrometry for monitoring of selenium in body fluids. Chem Speciat Bioavailab. 2015; https://doi.org/10.1080/09542299.2015.1107502

  25. Šlejkovec Z, Van Elteren JT, Woroniecka UD, Kroon KJ, Falnoga I, Byrne AR. Preliminary study on the determination of selenium compounds in some selenium-accumulating mushrooms. Biol Trace Elem Res. 2000. https://doi.org/10.1385/BTER:75:1-3:139.

    Article  Google Scholar 

  26. Suwazono Y, Åkesson A, Alfvén T, Järup L, Vahter M. Creatinine versus specific gravity-adjusted urinary cadmium concentrations. Biomarkers. 2005. https://doi.org/10.1080/13547500500159001.

    Article  Google Scholar 

  27. Stajnko A, Šlejkovec Z, Mazej D, France-Stiglic A, Briški AS, Prpić I, Spirić Z, Horvat M, Falnoga I. Arsenic metabolites; selenium; and AS3MT, MTHFR, AQP4, AQP9, SELENOP, INMT, and MT2A polymorphisms in Croatian-Slovenian population from PHIME-CROME study. Environ Res. 2019. https://doi.org/10.1016/j.envres.2018.11.045.

    Article  Google Scholar 

  28. Dedina J, Tsalev DL. Hydride generation atomic absorption spectrometry. New York: Wiley; 1995.

    Google Scholar 

  29. Bye R. Generation of selenium hydride from alkaline solutions: a new concept of the hydride generation-atomic absorption technique. J Automatic Chem. 1989;11:156–8.

    Article  CAS  Google Scholar 

  30. D’Ulivo A, Marcucci K, Bramanti E, Lampugnani L, Zamboni R. Studies in hydride generation atomic fluorescence determination of selenium and tellurium. Part 1 - self interference effect in hydrogen telluride generation and the effect of KI. Spectrochim Acta Part B. 2000;55:1325–36.

    Article  Google Scholar 

  31. Liu L, Zhang X, Yang L, Ren L, Wang D, Ye J. Metal nanoparticles induced photocatalysis. National Sci Rev. 2017. https://doi.org/10.1093/nsr/nwx019.

    Article  Google Scholar 

  32. Suchorski Y, Rupprechter G. Heterogeneous surfaces as structure and particle size libraries of model catalysts. Catal Lett. 2018. https://doi.org/10.1007/s10562-018-2506-1.

    Article  Google Scholar 

  33. Alaejos MS, Romero CD. Urinary selenium concentrations. Clin Chem. 1993;39:2040–52.

    Article  Google Scholar 

  34. Lajin B, Francesconi K. The association between the urinary excretion of trimethylselenonium and trimethylsulfonium in humans. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0167013.

    Article  Google Scholar 

Download references

Acknowledgements

The work was a part of a research program funded by the Slovenian Research Agency (P1-0143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Falnoga.

Ethics declarations

Ethics approval

Sampling was performed following the ethical standards (Declaration of Helsinki) and written consent was obtained from all participants. The protocol was approved by the National Medical Ethics Committee of the Republic of Slovenia (number of accordance: 0120–431/2018/4).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šlejkovec, Z., Stajnko, A., Mazej, D. et al. Trimethylselenonium ion determination in human urine by high-performance liquid chromatography–hydride generation–atomic fluorescence spectrometry optimization of the hydride generation step. Anal Bioanal Chem 415, 317–326 (2023). https://doi.org/10.1007/s00216-022-04408-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04408-6

Keywords

Navigation