Skip to main content

Advertisement

Log in

Application of clusterization algorithms for analysis of semivolatile pollutants in Arkhangelsk snow

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The best way to understand the environmental status of a certain region involves thorough non-target analysis, which will result in a list of pollutants under concern. Arkhangelsk (64° 32′ N 40° 32′ E, pop. ~ 344,000) is the largest city in the world to the north of the 60th parallel. Several industrial enterprises and the “cold finger” effect represent the major sources of air contamination in the city. Analysis of snow with comprehensive two-dimensional gas chromatography–high-resolution mass spectrometry allows detecting and quantifying the most hazardous volatile and semivolatile anthropogenic pollutants and estimating long-term air pollution. Target analysis, suspect screening, and non-target analysis of snow samples collected from ten sites within the city revealed the presence of several hundreds of organic compounds including 18 species from the US EPA list of priority pollutants. Fortunately, the levels of these compounds appeared to be much lower than the safe levels established in Russia. Phenol and dioctylphthalate could be considered as the pollutants of concern because their levels were about 20% of the safe thresholds. ChromaTOF® Tile, MetaboAnalyst software platform, and open-source software protocols were applied to process the obtained data. The obtained clusterization results of the samples were generally similar for various tools; however, each of them had certain peculiarities. Bis(2-ethylhexyl) hexanedioate, benzyl alcohol, phthalates, aniline, dinitrotoluenes, and fluoranthene showed the strongest influence on the clusterization of the studied samples. Possible sources of the major pollutants were proposed: car traffic and pulp and paper mills.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alygizakis NA, Gago-Ferrero P, Borova VL, Pavlidou A, Hatzianestis I, Thomaidis NS. Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci Total Environ. 2016;541:1097–105. https://doi.org/10.1016/j.scitotenv.2015.09.145.

    Article  CAS  PubMed  Google Scholar 

  2. Cizmas L, Sharma VK, Gray CM, McDonald TJ. Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett. 2015;13(4):381–94. https://doi.org/10.1007/s10311-015-0524-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farré M, Pérez S, Kantiani L, Barceló D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem. 2008;27:991–1007. https://doi.org/10.1016/j.trac.2008.09.010.

    Article  CAS  Google Scholar 

  4. Magi E, Di Carro M. Marine environment pollution: the contribution of mass spectrometry to the study of seawater. Mass Spectrom Rev. 2018;37:492–512. https://doi.org/10.1002/mas.21521.

    Article  CAS  PubMed  Google Scholar 

  5. Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015;72:3–27. https://doi.org/10.1016/j.watres.2014.08.053.

    Article  CAS  PubMed  Google Scholar 

  6. Richardson SD, Ternes TA. Water analysis: emerging contaminants and current issues. Anal Chem. 2018;90:398–428. https://doi.org/10.1021/acs.analchem.7b04577.

    Article  CAS  PubMed  Google Scholar 

  7. Švancárová R, Kosová I, Janiga M, Poganyova A. Organic components in the different types of precipitation - Ružomberok experimental area. Oecologia Mont. 2017;25:15–26.

    Google Scholar 

  8. Tijani JO, Fatoba OO, Babajide OO, Petrik LF. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ Chem Lett. 2016;14:27–49. https://doi.org/10.1007/s10311-015-0537-z.

    Article  CAS  Google Scholar 

  9. Xie Z, Wang Z, Magand O, Thollot A, Ebinghaus R, Mi W, Dommergue A. Occurrence of legacy and emerging organic contaminants in snow at Dome C in the Antarctic. Sci Total Environ. 2020;741: 140200. https://doi.org/10.1016/j.scitotenv.2020.140200.

    Article  CAS  PubMed  Google Scholar 

  10. Kümmerer K. Emerging Contaminants. In: Wilderer P, editor. Treatise on water science. Elsevier; 2011. pp. 69–87. https://doi.org/10.1016/B978-0-444-53199-5.00052-X.

  11. LEBEDEV AT. Environmental mass spectrometry. Annu Rev Anal Chem. 2013; 6:163–189. https://doi.org/10.1146/annurev-anchem-062012-092604.

  12. Tang Y, Yin M, Yang W, Li H, Zhong Y, Mo L, Liang Y, Ma X, Sun X. Emerging pollutants in water environment: occurrence, monitoring, fate, and risk assessment. Water Environ Res. 2019;91:984–91. https://doi.org/10.1002/wer.1163.

    Article  CAS  PubMed  Google Scholar 

  13. UNESCO-IIWQ. Emerging Pollutants in Water and Wastewater. 2015. https://en.unesco.org/emergingpollutantsinwaterandwastewater. Accessed 06 Aug 2022.

  14. Fitzgerald L, Wikoff DS. Persistent organic pollutants. In: Wexler, P editor. Encyclopedia of toxicology. Elsevier; 2014. pp 820–825. https://doi.org/10.1016/B978-0-12-386454-3.00211-6.

  15. Kudom DS. Persistent organic pollutants. IntechOpen. 2019. https://doi.org/10.5772/intechopen.74146.

    Article  Google Scholar 

  16. Downie D. Stockholm convention. In: Mulvaney D, Robbins P, editors. Green politics: an A-to-Z guide. SAGE Publications Inc: Thousand Oaks; 2011. pp 376–378. https://doi.org/10.4135/9781412971867.

  17. UNEP. The new POPs under the Stockholm Convention. 2009. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx. Accessed 06 Aug 2022.

  18. UNEP (B). Chemicals proposed for listing under the convention. 2021. http://www.pops.int/TheConvention/ThePOPs/ChemicalsProposedforListing/tabid/2510/Default.aspx. Accessed 06 Aug 2022.

  19. Rappaport SM. Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol. 2011;21:5–9. https://doi.org/10.1038/jes.2010.50.

    Article  CAS  PubMed  Google Scholar 

  20. Wheelock CE, Rappaport SM. The role of gene–environment interactions in lung disease: the urgent need for the exposome. Eur Respir J. 2020;55:1902064. https://doi.org/10.1183/13993003.02064-2019.

    Article  PubMed  Google Scholar 

  21. Di Carro M, Magi E, Massa F, Castellano M, Mirasole C, Tanwar S, Olivari E, Povero P. Untargeted approach for the evaluation of anthropic impact on the sheltered marine area of Portofino (Italy). Mar Pollut Bull. 2018;131:87–94. https://doi.org/10.1016/j.marpolbul.2018.03.059.

    Article  CAS  PubMed  Google Scholar 

  22. Gosetti F, Mazzucco E, Gennaro MC, Marengo E. Contaminants in water: non-target UHPLC/MS analysis. Environ Chem Lett. 2016;14:51–65. https://doi.org/10.1007/s10311-015-0527-1.

    Article  CAS  Google Scholar 

  23. Helmus R, ter Laak TL, van Wezel AP, de Voogt P, Schymanski EL. patRoon: open source software platform for environmental mass spectrometry based non-target screening. J Cheminform. 2021; 13. https://doi.org/10.1186/s13321-020-00477-w.

  24. Röhler L, Schlabach M, Haglund P, Breivik K, Kallenborn R, Bohlin-Nizzetto P. Non-target and suspect characterisation of organic contaminants in Arctic air – Part 2: Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air. Atmos Chem Phys. 2020;20:9031–49. https://doi.org/10.5194/acp-20-9031-2020.

    Article  CAS  Google Scholar 

  25. Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, Schulze T, Haglund P, Letzel T, Grosse S, Thomaidis NS, Bletsou A, Zwiener C, Ibáñez M, Portolés T, de Boer R, Reid MJ, Onghena M, Kunkel U, Schulz W, Guillon A, Noyon N, Leroy G, Bados P, Bogialli S, Stipaničev D, Rostkowski P, Hollender J. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem. 2015;407:6237–55. https://doi.org/10.1007/s00216-015-8681-7.

    Article  CAS  PubMed  Google Scholar 

  26. Abbas I, Badran G, Verdin A, Ledoux F, Roumié M, Courcot D, Garçon G. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environ Chem Lett. 2018;16:439–75. https://doi.org/10.1007/s10311-017-0697-0.

    Article  CAS  Google Scholar 

  27. Bayraktar H, Paloluoğlu C, Turalioğlu FS, Gaga EO. A multipoint (49 points) study of dry deposition of polycyclic aromatic hydrocarbons (PAHs) in Erzurum, Turkey by using surrogated snow surface samplers. Environ Sci Pollut Res. 2016;23:12400–13. https://doi.org/10.1007/s11356-016-6427-5.

    Article  CAS  Google Scholar 

  28. Cui S, Song Z, Zhang L, Zhang Z, Hough R, Fu Q, An L, Shen Z, Li Y-F, Liu D, Gao S. Polycyclic aromatic hydrocarbons in fresh snow in the city of Harbin in northeast China. Atmos Environ. 2019;215: 116915. https://doi.org/10.1016/j.atmosenv.2019.116915.

    Article  CAS  Google Scholar 

  29. Drotikova T, Dekhtyareva A, Kallenborn R, Albinet A. Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives in the Arctic boundary layer: seasonal trends and local anthropogenic influence. Atmos Chem Phys. 2021;21:14351–70. https://doi.org/10.5194/acp-2021-193.

    Article  CAS  Google Scholar 

  30. US EPA. List of priority pollutants under the Clean Water Act. 40 Code Federal Regulations (CFR) Part 423 - steam electric power generating point source category, Appendix A. Effl. Guidel. 2. 2014. https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf. Accessed 06 Aug 2022.

  31. Mazur DM, Detenchuk EA, Sosnova AA, Artaev VB, Lebedev AT. GC-HRMS with complimentary ionization techniques for target and non-target screening for chemical exposure: expanding the insights of the air pollution markers in Moscow snow. Sci Total Environ. 2021;761: 144506. https://doi.org/10.1016/j.scitotenv.2020.144506.

    Article  CAS  PubMed  Google Scholar 

  32. Lebedev AT, Mazur DM, Artaev VB, Tikhonov GY. Better screening of non-target pollutants in complex samples using advanced chromatographic and mass spectrometric techniques. Environ Chem Lett. 2020;18:1753–60. https://doi.org/10.1007/s10311-020-01037-2.

    Article  CAS  Google Scholar 

  33. Mazur DM, Zenkevich IG, Artaev VB, Polyakova OV, Lebedev AT. Regression algorithm for calculating second-dimension retention indices in comprehensive two-dimensional gas chromatography. J Chromatogr A. 2018;1569:178–85. https://doi.org/10.1016/j.chroma.2018.07.038.

    Article  CAS  PubMed  Google Scholar 

  34. O’Callaghan S, De Souza DP, Isaac A, Wang Q, Hodkinson L, Olshansky M, Erwin T, Appelbe B, Tull DL, Roessner U, Bacic A, McConville MJ, Likić VA. PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools. BMC Bioinformatics. 2012; 13:115. https://doi.org/10.1186/1471-2105-13-115.

  35. Bunk B, Kucklick M, Jonas R, Munch R, Schobert M, Jahn D, Hiller K. MetaQuant: a tool for the automatic quantification of GC/MS-based metabolome data. Bioinformatics. 2006;22:2962–5. https://doi.org/10.1093/bioinformatics/btl526.

    Article  CAS  PubMed  Google Scholar 

  36. Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D. Metabolite detector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem. 2009;81:3429–39. https://doi.org/10.1021/ac802689c.

    Article  CAS  PubMed  Google Scholar 

  37. Katajamaa M, Miettinen J, Oresic M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics. 2006;22:634–6. https://doi.org/10.1093/bioinformatics/btk039.

    Article  CAS  PubMed  Google Scholar 

  38. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87. https://doi.org/10.1021/ac051437y.

    Article  CAS  PubMed  Google Scholar 

  39. Wenig P, Odermatt J. OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data. BMC Bioinformatics. 2010;11:405. https://doi.org/10.1186/1471-2105-11-405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stein SE. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom. 1999;10:770–81. https://doi.org/10.1016/S1044-0305(99)00047-1.

    Article  CAS  Google Scholar 

  41. Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal Chem. 2007;79:966–73. https://doi.org/10.1021/ac0614846.

    Article  CAS  PubMed  Google Scholar 

  42. Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc. 2011;6:743–60. https://doi.org/10.1038/nprot.2011.319.

    Article  CAS  PubMed  Google Scholar 

  43. Xia J, Wishart DS. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr Protoc Bioinform. 2011; 14:14.10.1–14.10.48 https://doi.org/10.1002/0471250953.bi1410s34.

  44. Carroll AJ, Badger MR, Harvey MA. The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC Bioinformatics. 2010;11:376. https://doi.org/10.1186/1471-2105-11-376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weber RJM, Lawson TN, Salek RM, Ebbels TMD, Glen RC, Goodacre R, Griffin JL, Haug K, Koulman A, Moreno P, Ralser M, Steinbeck C, Dunn WB, Viant MR. Computational tools and workflows in metabolomics: an international survey highlights the opportunity for harmonisation through Galaxy. Metabolomics. 2017;13:12. https://doi.org/10.1007/s11306-016-1147-x.

    Article  CAS  PubMed  Google Scholar 

  46. Spicer R, Salek RM, Moreno P, Cañueto D, Steinbeck C. Navigating freely-available software tools for metabolomics analysis. Metabolomics. 2017;13:106. https://doi.org/10.1007/s11306-017-1242-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lebedev AT, Mazur DM, Polyakova OV, Kosyakov DS, Kozhevnikov AY, Latkin TB, Andreeva YI, Artaev VB. Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya. Environ Pollut. 2018;239:416–27. https://doi.org/10.1016/j.envpol.2018.03.009.

    Article  CAS  PubMed  Google Scholar 

  48. Poliakova OV, Lebedev AT, Hänninen O. Organic pollutants in snow of urban and rural Russia and Finland. Toxicol Environ Chem. 2000;75:181–94. https://doi.org/10.1080/02772240009358903.

    Article  CAS  Google Scholar 

  49. Mazur DM, Harir M, Schmitt-Kopplin P, Polyakova OV, Lebedev AT. High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions. Sci Total Environ. 2016;557–558:12–9. https://doi.org/10.1016/j.scitotenv.2016.02.178.

    Article  CAS  PubMed  Google Scholar 

  50. Mazur DM, Latkin TB, Kosyakov DS, Kozhevnikov AYu, Ul’yanovskii NV, Kirilov AG, Lebedev AT. Arctic snow pollution: a GC-HRMS case study of Franz Joseph Land archipelago. Environ Pollut. 2020; 265:114885. https://doi.org/10.1016/j.envpol.2020.114885.

  51. Lebedev AT, Polyakova OV, Mazur DM, Bol’shov MA, Seregina IF. Estimation of contamination of atmosphere of Moscow in winter. J Anal Chem. 2012; 67:1039–1049. https://doi.org/10.1134/S1061934812140079.

  52. Rosstat. Resident population as of January 1, 2021. 2021. https://rosstat.gov.ru/folder/12781. Accessed 06 Aug 2022.

  53. Mazur DM, Polyakova OV, Artaev VB, Lebedev AT. Novel pollutants in the Moscow atmosphere in winter period: gas chromatography-high resolution time-of-flight mass spectrometry study. Environ Pollut. 2017;222:242–50. https://doi.org/10.1016/j.envpol.2016.12.049.

    Article  CAS  PubMed  Google Scholar 

  54. Jurica P, Van Leeuwen C. OMPC: an open-source MATLAB®-to-Python compiler. Front Neuroinform. 2009; 3. https://doi.org/10.3389/neuro.11.005.2009.

  55. Parsons BA, Marney LC, Siegler WC, Hoggard JC, Wright BW, Synovec RE. Tile-based Fisher ratio analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC−TOFMS) data using a null distribution approach. Anal Chem. 2015;87:3812–9. https://doi.org/10.1021/ac504472s.

    Article  CAS  PubMed  Google Scholar 

  56. Kosyakov DS, Shavrina IS, Ul’yanovskii NV, Lakhmanov DE, Lebedev AT. Occurrence of volatile and semi-volatile organic pollutants in the Russian Arctic atmosphere: the International Siberian Shelf Study Expedition (ISSS-2020). Atmosphere. 2021; 12:767. https://doi.org/10.3390/atmos12060767.

  57. Huang C, Hu Q, Wang H, Qiao L, Jing S, Wang H, Zhou M, Zhu S, Ma Y, Lou S, Li L, Tao S, Li Y, Lou D. Emission factors of particulate and gaseous compounds from a large cargo vessel operated under real-world conditions. Environ Pollut. 2018;242:667–74. https://doi.org/10.1016/j.envpol.2018.07.036.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao J, Zhang Y, Chang J, Peng S, Hong N, Hu J, Lv J, Wang T, Mao H. Emission characteristics and temporal variation of PAHs and their derivatives from an ocean-going cargo vessel. Chemosphere. 2020;249: 126194. https://doi.org/10.1016/j.chemosphere.2020.126194.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao J, Zhang Y, Wang T, Sun L, Yang Z, Lin Y, Chen Y, Mao H. Characterization of PM2.5-bound polycyclic aromatic hydrocarbons and their derivatives (nitro-and oxy-PAHs) emissions from two ship engines under different operating conditions. Chemosphere. 2019; 225:43–52. https://doi.org/10.1016/j.chemosphere.2019.03.022.

  60. Lebedev AT, Poliakova OV, Karakhanova NK, Petrosyan VS, Renzoni A. The contamination of birds with organic pollutants in the Lake Baikal region. Sci Total Environ. 1998;212:153–62. https://doi.org/10.1016/S0048-9697(97)00338-0.

    Article  CAS  PubMed  Google Scholar 

  61. Lebedev AT, Polyakova OV, Mazur DM, Artaev VB, Canet I, Lallement A, Vaïtilingom M, Deguillaume L, Delort AM. Detection of semi-volatile compounds in cloud waters by GC×GC-TOF-MS. Evidence of phenols and phthalates as priority pollutants. Environ Pollut. 2018; 241:616–625. https://doi.org/10.1016/j.envpol.2018.05.089.

  62. Polyakova OV, Artaev VB, Lebedev AT. Priority and emerging pollutants in the Moscow rain. Sci Total Environ. 2018;645:1126–34. https://doi.org/10.1016/j.scitotenv.2018.07.215.

    Article  CAS  PubMed  Google Scholar 

  63. Stockwell CE, Veres PR, Williams J, Yokelson RJ. Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. Atmos Chem Phys. 2015;15:845–65. https://doi.org/10.5194/acp-15-845-2015.

    Article  CAS  Google Scholar 

  64. Pusfitasari ED, Ruiz-Jimenez J, Heiskanen I, Jussila M, Hartonen K, Riekkola M-L. Aerial drone furnished with miniaturized versatile air sampling systems for selective collection of nitrogen containing compounds in boreal forest. Sci Total Environ. 2022;808: 152011. https://doi.org/10.1016/j.scitotenv.2021.152011.

    Article  CAS  PubMed  Google Scholar 

  65. Kosyakov DS, Ul’yanovskii NV, Latkin TB, Pokryshkin SA, Berzhonskis VR, Polyakova OV, Lebedev AT. Peat burning–an important source of pyridines in the earth atmosphere. Environ Pollut. 2020; 266:115109. https://doi.org/10.1016/j.envpol.2020.115109.

  66. Tureček F, McLafferty FW. Interpretation of mass spectra. 4th ed. Sausalito, CA: University Science Books; 1993.

    Google Scholar 

  67. Goudsmits E, Sharples GP, Birkett JW. Preliminary classification of characteristic organic gunshot residue compounds. Sci Justice. 2016;56:421–5. https://doi.org/10.1016/j.scijus.2016.06.007.

    Article  PubMed  Google Scholar 

  68. Taudte RV, Roux C, Blanes L, Horder M, Kirkbride KP, Beavis A. The development and comparison of collection techniques for inorganic and organic gunshot residues. Anal Bioanal Chem. 2016;408:2567–76. https://doi.org/10.1007/s00216-016-9357-7.

    Article  CAS  PubMed  Google Scholar 

  69. Caban M, Stepnowski P. The quantification of bisphenols and their analogues in wastewaters and surface water by an improved solid-phase extraction gas chromatography/mass spectrometry method. Environ Sci Pollut Res. 2020;27:28829–39. https://doi.org/10.1007/s11356-020-09123-2.

    Article  CAS  Google Scholar 

  70. Shehab ZN, Jamil NR, Aris AZ. Occurrence, environmental implications and risk assessment of bisphenol A in association with colloidal particles in an urban tropical river in Malaysia. Sci Rep. 2020;10:20360. https://doi.org/10.1038/s41598-020-77454-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Valentino R, D’Esposito V, Ariemma F, Cimmino I, Beguinot F, Formisano P. Bisphenol A environmental exposure and the detrimental effects on human metabolic health: is it necessary to revise the risk assessment in vulnerable population? J Endocrinol Invest. 2016;39:259–63. https://doi.org/10.1007/s40618-015-0336-1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was performed using instrumentation of the Core Facility Center “Arktika” of the Northern (Arctic) Federal University (Arkhangelsk, Russia).

Funding

This research was supported by the Russian Science Foundation (Grant No. 21-74-00024).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Dmitrii M. Mazur, Albert T. Lebedev; methodology: Dmitrii M. Mazur, Dmitriy A. Koluntaev, Albert T. Lebedev; formal analysis and investigation: Tomas B. Latkin, Anna A. Sosnova, Dmitrii M. Mazur, Kevin Siek, Dmitriy A. Koluntaev; writing—original draft preparation: Dmitrii M. Mazur, Anna A. Sosnova, Dmitriy A. Koluntaev; writing—review and editing: Albert T. Lebedev, Viatcheslav B. Artaev, Kevin Siek; funding acquisition: Dmitrii M. Mazur, Albert T. Lebedev; resources: Albert T. Lebedev, Dmitrii M. Mazur; supervision: Albert T. Lebedev

Corresponding author

Correspondence to D. M. Mazur.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Comprehensive 2D Chromatography with guest editors Peter Q. Tranchida and Luigi Mondello.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 612 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazur, D.M., Sosnova, A.A., Latkin, T.B. et al. Application of clusterization algorithms for analysis of semivolatile pollutants in Arkhangelsk snow. Anal Bioanal Chem 415, 2587–2599 (2023). https://doi.org/10.1007/s00216-022-04390-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04390-z

Keywords

Navigation