Skip to main content

Advertisement

Log in

Electrochemical biosensors for analysis of DNA point mutations in cancer research

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cancer is a genetic disease induced by mutations in DNA, in particular point mutations in important driver genes that lead to protein malfunctioning and ultimately to tumorigenesis. Screening for the most common DNA point mutations, especially in such genes as TP53, BRCA1 and BRCA2, EGFR, KRAS, or BRAF, is crucial to determine predisposition risk for cancer or to predict response to therapy. In this review, we briefly depict how these genes are involved in cancer, followed by a description of the most common techniques routinely applied for their analysis, including high-throughput next-generation sequencing technology and less expensive low-throughput options, such as real-time PCR, restriction fragment length polymorphism, or high resolution melting analysis. We then introduce benefits of electrochemical biosensors as interesting alternatives to the standard methods in terms of cost, speed, and simplicity. We describe most common strategies involved in electrochemical biosensing of point mutations, relying mostly on PCR or isothermal amplification techniques, and critically discuss major challenges and obstacles that, until now, prevented their more widespread application in clinical settings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harris TJR, McCormick F. The molecular pathology of cancer. Nat Rev Clin Oncol. 2010;7(5):251–65. https://doi.org/10.1038/nrclinonc.2010.41.

    Article  CAS  Google Scholar 

  2. Gagan J, Van Allen EM. Next-generation sequencing to guide cancer therapy. Genome Med. 2015;7(1):80. https://doi.org/10.1186/s13073-015-0203-x.

    Article  Google Scholar 

  3. Campuzano S, Yanez-Sedeno P, Pingarron JM. Current trends and challenges in bioelectrochemistry for non-invasive and early diagnosis. Curr Opin Electrochem. 2018;12:81–91. https://doi.org/10.1016/j.coelec.2018.04.015.

    Article  CAS  Google Scholar 

  4. Bartosik M, Jirakova L. Electrochemical analysis of nucleic acids as potential cancer biomarkers. Curr Opin Electrochem. 2019;14:96–103. https://doi.org/10.1016/j.coelec.2019.01.002.

    Article  CAS  Google Scholar 

  5. Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: analytical approach. Trends Analyt Chem. 2019;119: 115609. https://doi.org/10.1016/j.trac.2019.07.020.

    Article  CAS  Google Scholar 

  6. Zhang W, Xiao G, Chen J, Wang L, Hu Q, Wu J, Zhang W, Song M, Qiao J, Xu C. Electrochemical biosensors for measurement of colorectal cancer biomarkers. Anal Bioanal Chem. 2021;413(9):2407–28. https://doi.org/10.1007/s00216-021-03197-8.

    Article  CAS  Google Scholar 

  7. Rahner N, Steinke V. Hereditary cancer syndromes Dtsch Arztebl Int. 2008;105(41):706–14. https://doi.org/10.3238/arztebl.2008.0706.

    Article  Google Scholar 

  8. Soukupova J, Zemankova P, Kleiblova P, Janatova M, Kleibl Z. CZECANCA: CZEch CAncer paNel for Clinical Application – návrh a příprava cíleného sekvenačního panelu pro identifi kaci nádorové predispozice u rizikových osob v České republice. Klin Onkol. 2015;29:S46–54. https://doi.org/10.14735/amko2016S46.

    Article  Google Scholar 

  9. Lane DP. p53, guardian of the genome. Nature. 1992;358(6381):15–6. https://doi.org/10.1038/358015a0.

    Article  CAS  Google Scholar 

  10. Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 2000;14(8):981–93.

    Article  CAS  Google Scholar 

  11. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–70. https://doi.org/10.1038/nrc3711.

    Article  CAS  Google Scholar 

  12. Malkin D. Li-fraumeni syndrome. Genes. Cancer. 2011;2(4):475–84. https://doi.org/10.1177/1947601911413466.

    Article  CAS  Google Scholar 

  13. Li FP, Fraumeni JFJ. Soft-tissue sarcomas, breast cancer, and other neoplasms. Ann Intern Med. 1969;71(4):747–52. https://doi.org/10.7326/0003-4819-71-4-747.

    Article  CAS  Google Scholar 

  14. Lynch HT, Mulcahy GM, Harris RE, Guirgis HA, Lynch JF. Genetic and pathologic findings in a kindred with hereditary sarcoma, breast cancer, brain tumors, leukemia, lung, laryngeal, and adrenal cortical carcinoma. Cancer. 1978;41(5):2055–64. https://doi.org/10.1002/1097-0142(197805)41:5%3c2055::aid-cncr2820410554%3e3.0.co;2-x.

    Article  CAS  Google Scholar 

  15. Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.

    CAS  Google Scholar 

  16. Guha T, Malkin D (2017) Inherited TP53 mutations and the Li-Fraumeni syndrome. Cold Spring Harb Perspect Med 7 (4). https://doi.org/10.1101/cshperspect.a026187

  17. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2018;47(D1):D941–7. https://doi.org/10.1093/nar/gky1015.

    Article  CAS  Google Scholar 

  18. COSMIC: Catalogue of somatic mutations in cancer. https://cancer.sanger.ac.uk/cosmic. Accessed 11 Jul 2022.

  19. Birch JM, Alston RD, McNally RJQ, Evans DGR, Kelsey AM, Harris M, Eden OB, Varley JM. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene. 2001;20(34):4621–8. https://doi.org/10.1038/sj.onc.1204621.

    Article  CAS  Google Scholar 

  20. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12(1):68–78. https://doi.org/10.1038/nrc3181.

    Article  CAS  Google Scholar 

  21. Levy-Lahad E, Friedman E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2007;96(1):11–5. https://doi.org/10.1038/sj.bjc.6603535.

    Article  CAS  Google Scholar 

  22. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, Pasini B, Radice P, Manoukian S, Eccles DM, Tang N, Olah E, Anton-Culver H, Warner E, Lubinski J, Gronwald J, Gorski B, Tulinius H, Thorlacius S, Eerola H, Nevanlinna H, Syrjäkoski K, Kallioniemi OP, Thompson D, Evans C, Peto J, Lalloo F, Evans DG, Easton DF. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30. https://doi.org/10.1086/375033.

    Article  CAS  Google Scholar 

  23. Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, Evans DG, Izatt L, Eeles RA, Adlard J, Davidson R, Eccles D, Cole T, Cook J, Brewer C, Tischkowitz M, Douglas F, Hodgson S, Walker L, Porteous ME, Morrison PJ, Side LE, Kennedy MJ, Houghton C, Donaldson A, Rogers MT, Dorkins H, Miedzybrodzka Z, Gregory H, Eason J, Barwell J, McCann E, Murray A, Antoniou AC, Easton DF. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105(11):812–22. https://doi.org/10.1093/jnci/djt095.

    Article  CAS  Google Scholar 

  24. Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature. 1997;386(6627):761–3. https://doi.org/10.1038/386761a0.

    Article  CAS  Google Scholar 

  25. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67. https://doi.org/10.1016/0092-8674(90)90186-i.

    Article  CAS  Google Scholar 

  26. Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T, Traulsen A, Nowak MA, Siegel C, Velculescu VE, Kinzler KW, Vogelstein B, Willis J, Markowitz SD. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA. 2008;105(11):4283–8. https://doi.org/10.1073/pnas.0712345105.

    Article  Google Scholar 

  27. Tomasetti C, Vogelstein B, Parmigiani G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA. 2013;110(6):1999–2004. https://doi.org/10.1073/pnas.1221068110.

    Article  Google Scholar 

  28. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58. https://doi.org/10.1126/science.1235122.

    Article  CAS  Google Scholar 

  29. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272(5264):1023–6. https://doi.org/10.1126/science.272.5264.1023.

    Article  CAS  Google Scholar 

  30. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70. https://doi.org/10.1016/s0092-8674(00)81333-1.

    Article  CAS  Google Scholar 

  31. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MDM, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9. https://doi.org/10.1038/nature12634.

    Article  CAS  Google Scholar 

  32. Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S, Aoki T, Miki Y, Mori T, Nakamura Y. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1(4):229–33. https://doi.org/10.1093/hmg/1.4.229.

    Article  CAS  Google Scholar 

  33. Mann KM, Ying H, Juan J, Jenkins NA, Copeland NG. KRAS-related proteins in pancreatic cancer. Pharmacol Ther. 2016;168:29–42. https://doi.org/10.1016/j.pharmthera.2016.09.003.

    Article  CAS  Google Scholar 

  34. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F, Wittinghofer A. The ras-rasGAP complex: Structural basis for GTPase activation and its loss in oncogenic ras mutants. Science. 1997;277(5324):333–9. https://doi.org/10.1126/science.277.5324.333.

    Article  CAS  Google Scholar 

  35. Li Z-N, Zhao L, Yu L-F, Wei M-J. BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy. Gastroenterol Rep. 2020;8(3):192–205. https://doi.org/10.1093/gastro/goaa022.

    Article  Google Scholar 

  36. Wang Z. ErbB receptors and cancer. In: Wang Z, editor. ErbB receptor signaling: methods and protocols. New York: Springer; 2017. p. 3–35. https://doi.org/10.1007/978-1-4939-7219-7_1.

    Chapter  Google Scholar 

  37. Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282–303. https://doi.org/10.1016/j.ccr.2014.02.025.

    Article  CAS  Google Scholar 

  38. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3–20. https://doi.org/10.1002/1878-0261.12155.

    Article  Google Scholar 

  39. Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28(7):1254–61. https://doi.org/10.1200/jco.2009.24.6116.

    Article  CAS  Google Scholar 

  40. Takahashi T, Sakai K, Kenmotsu H, Yoh K, Daga H, Ohira T, Ueno T, Aoki T, Hayashi H, Yamazaki K, Hosomi Y, Chen-Yoshikawa TF, Okumura N, Takiguchi Y, Sekine A, Haruki T, Yamamoto H, Sato Y, Akamatsu H, Seto T, Saeki S, Sugio K, Nishio M, Inokawa H, Yamamoto N, Nishio K, Tsuboi M. Predictive value of EGFR mutation in non-small-cell lung cancer patients treated with platinum doublet postoperative chemotherapy. Cancer Sci. 2022;113(1):287–96. https://doi.org/10.1111/cas.15171.

    Article  CAS  Google Scholar 

  41. Richman SD, Seymour MT, Chambers P, Elliott F, Daly CL, Meade AM, Taylor G, Barrett JH, Quirke P. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J Clin Oncol. 2009;27(35):5931–7. https://doi.org/10.1200/jco.2009.22.4295.

    Article  CAS  Google Scholar 

  42. Seligmann JF, Fisher D, Smith CG, Richman SD, Elliott F, Brown S, Adams R, Maughan T, Quirke P, Cheadle J, Seymour M, Middleton G. Investigating the poor outcomes ofBRAF-mutant advanced colorectal cancer: analysis from 2530 patients in randomised clinical trials. Ann Oncol. 2017;28(3):562–8. https://doi.org/10.1093/annonc/mdw645.

    Article  CAS  Google Scholar 

  43. Edge P, Bansal V. Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing. Nat Commun. 2019;10(1):4660. https://doi.org/10.1038/s41467-019-12493-y.

    Article  CAS  Google Scholar 

  44. Mardis ER. DNA sequencing technologies: 2006–2016. Nat Protoc. 2017;12(2):213–8. https://doi.org/10.1038/nprot.2016.182.

    Article  CAS  Google Scholar 

  45. Ravi RK, Walton K, Khosroheidari M. MiSeq: a next generation sequencing platform for genomic analysis. Methods Mol Biol. 2018;1706:223–32. https://doi.org/10.1007/978-1-4939-7471-9_12.

    Article  CAS  Google Scholar 

  46. Davis AHT, Wang J, Tsang TC, Harris DT. Direct sequencing is more accurate and feasible in detecting single nucleotide polymorphisms than RFLP: using human vascular endothelial growth factor gene as a model. Biol Res Nurs. 2007;9(2):170–8. https://doi.org/10.1177/1099800407308083.

    Article  CAS  Google Scholar 

  47. Hashim HO, Al-Shuhaib MBS. Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: a review J Appl Biotechnol Rep. 2019;6(4):137–44. https://doi.org/10.29252/jabr.06.04.02.

    Article  CAS  Google Scholar 

  48. He H, Zhang HL, Li ZX, Liu Y, Liu XL. Expression, SNV identification, linkage disequilibrium, and combined genotype association analysis of the muscle-specific gene CSRP3 in Chinese cattle. Gene. 2014;535(1):17–23. https://doi.org/10.1016/j.gene.2013.11.014.

    Article  CAS  Google Scholar 

  49. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74(1):681–710. https://doi.org/10.1146/annurev.biochem.74.082803.133243.

    Article  CAS  Google Scholar 

  50. Abi A, Safavi A. Targeted detection of single-nucleotide variations: progress and promise. ACS Sens. 2019;4(4):792–807. https://doi.org/10.1021/acssensors.8b01604.

    Article  CAS  Google Scholar 

  51. Hestekin CN, Barron AE. The potential of electrophoretic mobility shift assays for clinical mutation detection. Electrophoresis. 2006;27(19):3805–15. https://doi.org/10.1002/elps.200600421.

    Article  CAS  Google Scholar 

  52. Miller KM, Ming TJ, Schulze AD, Withler RE. Denaturing gradient gel electrophoresis (DGGE): a rapid and sensitive technique to screen nucleotide sequence variation in populations. Biotechniques. 1999;27(5):1016–30. https://doi.org/10.2144/99275rr02.

    Article  CAS  Google Scholar 

  53. Farrar JS, Wittwer CT. Chapter 6 - High-resolution melting curve analysis for molecular diagnostics. In: Patrinos GP, editor. Molecular Diagnostics (3rd Edition). Academic Press; 2017. p. 79–102. https://doi.org/10.1016/B978-0-12-802971-8.00006-7.

    Chapter  Google Scholar 

  54. Erali M, Voelkerding KV, Wittwer CT. High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol. 2008;85(1):50–8. https://doi.org/10.1016/j.yexmp.2008.03.012.

    Article  CAS  Google Scholar 

  55. Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem. 2004;50(10):1748–54. https://doi.org/10.1373/clinchem.2003.029751.

    Article  CAS  Google Scholar 

  56. Huang W-L, Wei F, Wong DT, Lin C-C, Su W-C. The emergent landscape of detecting EGFR mutations using circulating tumor DNA in lung cancer. Biomed Res Int. 2015;2015: 340732. https://doi.org/10.1155/2015/340732.

    Article  CAS  Google Scholar 

  57. Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci (Lond). 2005;109(4):365–79. https://doi.org/10.1042/cs20050086.

    Article  CAS  Google Scholar 

  58. Medrano RFV, de Oliveira CA. Guidelines for the tetra-primer ARMS–PCR technique development. Mol Biotechnol. 2014;56(7):599–608. https://doi.org/10.1007/s12033-014-9734-4.

    Article  CAS  Google Scholar 

  59. Kofiadi IA, Rebrikov DV. Methods for detecting single nucleotide polymorphisms: allele-specific PCR and hybridization with oligonucleotide probe. Russ J Genet. 2006;42(1):16–26. https://doi.org/10.1134/S1022795406010029.

    Article  CAS  Google Scholar 

  60. Miotke L, Lau BT, Rumma RT, Ji HP. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal Chem. 2014;86(5):2618–24. https://doi.org/10.1021/ac403843j.

    Article  CAS  Google Scholar 

  61. Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault S-F. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn. 2018;18(1):7–17. https://doi.org/10.1080/14737159.2018.1400384.

    Article  CAS  Google Scholar 

  62. Gaylord BS, Massie MR, Feinstein SC, Bazan GC. SNP detection using peptide nucleic acid probes and conjugated polymers: applications in neurodegenerative disease identification. Proc Natl Acad Sci USA. 2005;102(1):34–9. https://doi.org/10.1073/pnas.0407578101.

    Article  CAS  Google Scholar 

  63. Sun Y, Tian H, Liu C, Yang D, Li Z. A clamp-based one-step droplet digital reverse transcription PCR (ddRT-PCR) for precise quantitation of messenger RNA mutation in single cells. ACS Sens. 2018;3(9):1795–801. https://doi.org/10.1021/acssensors.8b00524.

    Article  CAS  Google Scholar 

  64. Yu TM, Morrison C, Gold EJ, Tradonsky A, Layton AJ. Multiple biomarker testing tissue consumption and completion rates with single-gene tests and investigational use of Oncomine Dx Target Test for advanced non-small-cell lung cancer: a single-center analysis. Clin Lung Cancer. 2019;20(1):20-29.e28. https://doi.org/10.1016/j.cllc.2018.08.010.

    Article  Google Scholar 

  65. Zhao J, Liu P, Yu Y, Zhi J, Zheng X, Yu J, Gao M. Comparison of diagnostic methods for the detection of a BRAF mutation in papillary thyroid cancer. Oncol Lett. 2019;17(5):4661–6. https://doi.org/10.3892/ol.2019.10131.

    Article  CAS  Google Scholar 

  66. Situ B, Cao N, Li B, Liu Q, Lin L, Dai Z, Zou X, Cai Z, Wang Q, Yan X, Zheng L. Sensitive electrochemical analysis of BRAF V600E mutation based on an amplification-refractory mutation system coupled with multienzyme functionalized Fe3O4/Au nanoparticles. Biosens Bioelectron. 2013;43:257–63. https://doi.org/10.1016/j.bios.2012.12.021.

    Article  CAS  Google Scholar 

  67. Wei J, Wang Y, Gao J, Li Z, Pang R, Zhai T, Ma Y, Wang Z, Meng X. Detection of BRAFV600E mutation of thyroid cancer in circulating tumor DNA by an electrochemical-enrichment assisted ARMS-qPCR assay. Microchem J. 2022;179: 107452. https://doi.org/10.1016/j.microc.2022.107452.

    Article  CAS  Google Scholar 

  68. Won BY, Shin SC, Chung W-y, Shin S, Cho D-Y, Park HG. Mismatch DNA-specific enzymatic cleavage employed in a new method for the electrochemical detection of genetic mutations. ChemComm. 2009;28:4230–2. https://doi.org/10.1039/B907268C.

    Article  Google Scholar 

  69. Xu X-W, Weng X-H, Wang C-L, Lin W-W, Liu A-L, Chen W, Lin X-H. Detection EGFR exon 19 status of lung cancer patients by DNA electrochemical biosensor. Biosens Bioelectron. 2016;80:411–7. https://doi.org/10.1016/j.bios.2016.02.009.

    Article  CAS  Google Scholar 

  70. Wang X, Wu J, Mao W, He X, Ruan L, Zhu J, Shu P, Zhang Z, Jiang B, Zhang X. A tetrahedral DNA nanostructure-decorated electrochemical platform for simple and ultrasensitive EGFR genotyping of plasma ctDNA. Analyst. 2020;145(13):4671–9. https://doi.org/10.1039/D0AN00591F.

    Article  CAS  Google Scholar 

  71. Wu L, Zhou T, Huang R. A universal CRISPR/Cas9-based electrochemiluminescence probe for sensitive and single-base-specific DNA detection. Sens Actuators B Chem. 2022;357: 131411. https://doi.org/10.1016/j.snb.2022.131411.

    Article  CAS  Google Scholar 

  72. Lee YuH, Cao Y, Lu X, Hsing IM. Detection of rare variant alleles using the AsCas12a double-stranded DNA trans-cleavage activity. Biosens Bioelectron. 2021;189: 113382. https://doi.org/10.1016/j.bios.2021.113382.

    Article  CAS  Google Scholar 

  73. Zhu D, Xing D, Shen X, Liu J, Chen Q. High sensitive approach for point mutation detection based on electrochemiluminescence. Biosens Bioelectron. 2004;20(3):448–53. https://doi.org/10.1016/j.bios.2004.02.029.

    Article  CAS  Google Scholar 

  74. Attoye B, Baker MJ, Thomson F, Pou C, Corrigan DK. Optimisation of an electrochemical DNA sensor for measuring KRAS G12D and G13D point mutations in different tumour types. Biosensors. 2021;11(2):42. https://doi.org/10.3390/bios11020042.

    Article  CAS  Google Scholar 

  75. Miyahara H, Yamashita K, Kanai M, Uchida K, Takagi M, Kondo H, Takenaka S. Electrochemical analysis of single nucleotide polymorphisms of p53 gene. Talanta. 2002;56(5):829–35. https://doi.org/10.1016/S0039-9140(01)00652-X.

    Article  CAS  Google Scholar 

  76. Horakova P, Simkova E, Vychodilova Z, Brazdova M, Fojta M. Detection of single nucleotide polymorphisms in p53 mutation hotspots and expression of mutant p53 in human cell lines using an enzyme-linked electrochemical assay. Electroanalysis. 2009;21(15):1723–9. https://doi.org/10.1002/elan.200904656.

    Article  CAS  Google Scholar 

  77. Bi Q, Gan XY, Yuan R, Xiang Y. Copper-free click chemistry-mediated cyclic ligation amplification for highly sensitive and non-label electrochemical detection of gene mutation. J Electrochem Soc. 2020;167(2):027535. https://doi.org/10.1149/1945-7111/ab6a81.

    Article  CAS  Google Scholar 

  78. Hamidi-Asl E, Raoof JB, Hejazi MS, Sharifi S, Golabi SM, Palchetti I, Mascini M. A genosensor for point mutation detection of P53 Gene PCR product using magnetic particles. Electroanalysis. 2015;27(6):1378–86. https://doi.org/10.1002/elan.201400660.

    Article  CAS  Google Scholar 

  79. Esteban-Fernandez de Avila B, Araque E, Campuzano S, Pedrero M, Dalkiran B, Barderas R, Villalonga R, Kilic E, Pingarron JM. Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. Anal Chem. 2015;87(4):2290–8. https://doi.org/10.1021/ac504032d.

    Article  CAS  Google Scholar 

  80. Wang C, Yu J, Qi L, Yu J, Yang M, Du Y. Glucometer-based ultra-sensitive BRAF V600E mutation detection facilitated by magnetic nanochains and a self-made point-of-care (POC) device. Electroanalysis. 2022;34(2):294–301. https://doi.org/10.1002/elan.202100286.

    Article  CAS  Google Scholar 

  81. Chen M, Wu D, Tu S, Yang C, Chen D, Xu Y. CRISPR/Cas9 cleavage triggered ESDR for circulating tumor DNA detection based on a 3D graphene/AuPtPd nanoflower biosensor. Biosens Bioelectron. 2021;173: 112821. https://doi.org/10.1016/j.bios.2020.112821.

    Article  CAS  Google Scholar 

  82. Liu F, Peng J, Lei Y-M, Liu R-S, Jin L, Liang H, Liu H-F, Ma S-Y, Zhang X-H, Zhang Y-P, Li C-P, Zhao H. Electrochemical detection of ctDNA mutation in non-small cell lung cancer based on CRISPR/Cas12a system. Sens Actuators B Chem. 2022;362: 131807. https://doi.org/10.1016/j.snb.2022.131807.

    Article  CAS  Google Scholar 

  83. Xiao Q, Feng J, Li J, Liu Y, Wang D, Huang S. A ratiometric electrochemical biosensor for ultrasensitive and highly selective detection of the K-ras gene via exonuclease III-assisted target recycling and rolling circle amplification strategies. Anal Methods. 2019;11(32):4146–56. https://doi.org/10.1039/C9AY01007F.

    Article  CAS  Google Scholar 

  84. Lee S, You J, Baek I, Park H, Jang K, Park C, Na S. Synergistic enhanced rolling circle amplification based on mutS and radical polymerization for single-point mutation DNA detection. Biosens Bioelectron. 2022;210: 114295. https://doi.org/10.1016/j.bios.2022.114295.

    Article  CAS  Google Scholar 

  85. Wang T, Peng Q, Guo B, Zhang D, Zhao M, Que H, Wu H, Yan Y. An integrated electrochemical biosensor based on target-triggered strand displacement amplification and “four-way” DNA junction towards ultrasensitive detection of PIK3CA gene mutation. Biosens Bioelectron. 2020;150: 111954. https://doi.org/10.1016/j.bios.2019.111954.

    Article  CAS  Google Scholar 

  86. Su Q, Xing D, Zhou X. Magnetic beads based rolling circle amplification–electrochemiluminescence assay for highly sensitive detection of point mutation. Biosens Bioelectron. 2010;25(7):1615–21. https://doi.org/10.1016/j.bios.2009.11.025.

    Article  CAS  Google Scholar 

  87. Yang L, Tao Y, Yue G, Li R, Qiu B, Guo L, Lin Z, Yang H-H. Highly selective and sensitive electrochemiluminescence biosensor for p53 DNA sequence based on nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification. Anal Chem. 2016;88(10):5097–103. https://doi.org/10.1021/acs.analchem.5b04521.

    Article  CAS  Google Scholar 

  88. Jin X, Zhang D, Zhang W, Wang Y, Xiao Q, Huang S. Ratiometric electrochemical biosensor for ultrasensitive and highly selective detection of p53 gene based on nicking endonuclease-assisted target recycling and rolling circle amplification. Microchem J. 2021;168: 106461. https://doi.org/10.1016/j.microc.2021.106461.

    Article  CAS  Google Scholar 

  89. Wang Q, Yang C, Xiang Y, Yuan R, Chai Y. Dual amplified and ultrasensitive electrochemical detection of mutant DNA Biomarkers based on nuclease-assisted target recycling and rolling circle amplifications. Biosens Bioelectron. 2014;55:266–71. https://doi.org/10.1016/j.bios.2013.12.034.

    Article  CAS  Google Scholar 

  90. Dou B, Li J, Jiang B, Yuan R, Xiang Y. Electrochemical screening of single nucleotide polymorphisms with significantly enhanced discrimination factor by an amplified ratiometric sensor. Anal Chim Acta. 2018;1038:166–72. https://doi.org/10.1016/j.aca.2018.07.027.

    Article  CAS  Google Scholar 

  91. Benvidi A, Dehghani Firouzabadi A, Dehghan Tezerjani M, Moshtaghiun SM, Mazloum-Ardakani M, Ansarin A. A highly sensitive and selective electrochemical DNA biosensor to diagnose breast cancer. J Electroanal Chem. 2015;750:57–64. https://doi.org/10.1016/j.jelechem.2015.05.002.

    Article  CAS  Google Scholar 

  92. Tripathy S, Gangwar R, Supraja P, Rao AN, Vanjari SRK, Singh SG. Graphene doped Mn2O3 nanofibers as a facile electroanalytical DNA point mutation detection platform for early diagnosis of breast/ovarian cancer. Electroanalysis. 2018;30(9):2110–20. https://doi.org/10.1002/elan.201800220.

    Article  CAS  Google Scholar 

  93. Senel M, Dervisevic M, Kokkokoğlu F. Electrochemical DNA biosensors for label-free breast cancer gene marker detection. Anal Bioanal Chem. 2019;411(13):2925–35. https://doi.org/10.1007/s00216-019-01739-9.

    Article  CAS  Google Scholar 

  94. Das J, Ivanov I, Safaei TS, Sargent EH, Kelley SO. Combinatorial probes for high-throughput electrochemical analysis of circulating nucleic acids in clinical samples. Angew Chem Int Ed. 2018;57(14):3711–6. https://doi.org/10.1002/anie.201800455.

    Article  CAS  Google Scholar 

  95. Hu F, Zhang W, Meng W, Ma Y, Zhang X, Xu Y, Wang P, Gu Y. Ferrocene-labeled and purification-free electrochemical biosensor based on ligase chain reaction for ultrasensitive single nucleotide polymorphism detection. Anal Chim Acta. 2020;1109:9–18. https://doi.org/10.1016/j.aca.2020.02.062.

    Article  CAS  Google Scholar 

  96. Das J, Ivanov I, Montermini L, Rak J, Sargent EH, Kelley SO. An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem. 2015;7(7):569–75. https://doi.org/10.1038/nchem.2270.

    Article  CAS  Google Scholar 

  97. Zeng N, Xiang J. Detection of KRAS G12D point mutation level by anchor-like DNA electrochemical biosensor. Talanta. 2019;198:111–7. https://doi.org/10.1016/j.talanta.2019.01.105.

    Article  CAS  Google Scholar 

  98. Zhou X, Liu X, Xia X, Yang X, Xiang H. Sensitive, enzyme-free and label-free electrochemical sensor for K-ras G12D point mutation detection based on double cascade amplification reaction. J Electroanal Chem. 2020;870: 114270. https://doi.org/10.1016/j.jelechem.2020.114270.

    Article  CAS  Google Scholar 

  99. Huang Y, Tao M, Luo S, Zhang Y, Situ B, Ye X, Chen P, Jiang X, Wang Q, Zheng L. A novel nest hybridization chain reaction based electrochemical assay for sensitive detection of circulating tumor DNA. Anal Chim Acta. 2020;1107:40–7. https://doi.org/10.1016/j.aca.2020.02.006.

    Article  CAS  Google Scholar 

  100. Wang W, Gao Y, Wang W, Zhang J, Li Q, Wu Z-S. Ultrasensitive electrochemical detection of cancer-related point mutations based on surface-initiated three-dimensionally self-assembled DNA nanostructures from only two palindromic probes. Anal Chem. 2022;94(2):1029–36. https://doi.org/10.1021/acs.analchem.1c03991.

    Article  CAS  Google Scholar 

  101. Liu JL, Ma YC, Yang T, Hu R, Yang YH. A single nucleotide polymorphism electrochemical sensor based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probes. Mikrochim Acta. 2021;188(8):266. https://doi.org/10.1007/s00604-021-04924-9.

    Article  CAS  Google Scholar 

  102. Raoof JB, Ojani R, Golabi SM, Hamidi-Asl E, Hejazi MS. Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide. Sens Actuators B Chem. 2011;157(1):195–201. https://doi.org/10.1016/j.snb.2011.03.049.

    Article  CAS  Google Scholar 

  103. Bodulev OL, Sakharov IY. Isothermal nucleic acid amplification techniques and their use in bioanalysis. Biochem (Mosc). 2020;85(2):147–66. https://doi.org/10.1134/s0006297920020030.

    Article  CAS  Google Scholar 

  104. Deng H, Gao Z. Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal Chim Acta. 2015;853:30–45. https://doi.org/10.1016/j.aca.2014.09.037.

    Article  CAS  Google Scholar 

  105. Weng X-H, Xu X-W, Wang C-L, Lin W-W, Liu A-L, Chen W, Lin X-H. Genotyping of common EGFR mutations in lung cancer patients by electrochemical biosensor. J Pharm Biomed Anal. 2018;150:176–82. https://doi.org/10.1016/j.jpba.2017.12.015.

    Article  CAS  Google Scholar 

  106. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19(3):225–32. https://doi.org/10.1038/898.

    Article  CAS  Google Scholar 

  107. Baner J, Nilsson M, Mendel-Hartvig M, Landegren U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 1998;26(22):5073–8. https://doi.org/10.1093/nar/26.22.5073.

    Article  CAS  Google Scholar 

  108. Zhu X, Feng C, Zhang B, Tong H, Gao T, Li G. A netlike rolling circle nucleic acid amplification technique. Analyst. 2015;140(1):74–8. https://doi.org/10.1039/C4AN01711K.

    Article  CAS  Google Scholar 

  109. Dahl F, Baner J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M. Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci USA. 2004;101(13):4548–53. https://doi.org/10.1073/pnas.0400834101.

    Article  CAS  Google Scholar 

  110. Wang D, Hu L, Zhou H, Abdel-Halim ES, Zhu J-J. Molecular beacon structure mediated rolling circle amplification for ultrasensitive electrochemical detection of microRNA based on quantum dots tagging. Electrochem Commun. 2013;33:80–3. https://doi.org/10.1016/j.elecom.2013.04.030.

    Article  CAS  Google Scholar 

  111. Wang S, Lu S, Zhao J, Ye J, Huang J, Yang X. An electric potential modulated cascade of catalyzed hairpin assembly and rolling chain amplification for microRNA detection. Biosens Bioelectron. 2019;126:565–71. https://doi.org/10.1016/j.bios.2018.09.088.

    Article  CAS  Google Scholar 

  112. Li B, Yin H, Zhou Y, Wang M, Wang J, Ai S. Photoelectrochemical detection of miRNA-319a in rice leaf responding to phytohormones treatment based on CuO-CuWO4 and rolling circle amplification. Sens Actuators B Chem. 2018;255:1744–52. https://doi.org/10.1016/j.snb.2017.08.192.

    Article  CAS  Google Scholar 

  113. Zhang S, Wu Z, Shen G, Yu R. A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Biosens Bioelectron. 2009;24(11):3201–7. https://doi.org/10.1016/j.bios.2009.03.012.

    Article  CAS  Google Scholar 

  114. Geng Y, Wu J, Shao L, Yan F, Ju H. Sensitive colorimetric biosensing for methylation analysis of p16/CDKN2 promoter with hyperbranched rolling circle amplification. Biosens Bioelectron. 2014;61:593–7. https://doi.org/10.1016/j.bios.2014.06.010.

    Article  CAS  Google Scholar 

  115. Sakhabutdinova AR, Maksimova MA, Garafutdinov RR. Synthesis of circular DNA templates with T4 RNA ligase for rolling circle amplification. Mol Biol. 2017;51(4):639–46. https://doi.org/10.1134/s0026893317040161.

    Article  CAS  Google Scholar 

  116. Li X, Luo J, Xiao P, Shi X, Tang C, Lu Z. Genotyping of multiple single nucleotide polymorphisms with hyperbranched rolling circle amplification and microarray. Clin Chim Acta. 2009;399(1):40–4. https://doi.org/10.1016/j.cca.2008.08.012.

    Article  CAS  Google Scholar 

  117. Moehling TJ, Choi G, Dugan LC, Salit M, Meagher RJ. LAMP diagnostics at the point-of-care: emerging trends and perspectives for the developer community. Expert Rev Mol Diagn. 2021;21(1):43–61. https://doi.org/10.1080/14737159.2021.1873769.

    Article  CAS  Google Scholar 

  118. Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): Expansion of its practical application as a tool to achieve universal health coverage. J Infect Chemother. 2020;26(1):13–7. https://doi.org/10.1016/j.jiac.2019.07.020.

    Article  Google Scholar 

  119. Nzelu CO, Kato H, Peters NC (2019) Loop-mediated isothermal amplification (LAMP): An advanced molecular point-of-care technique for the detection of Leishmania infection. PLOS Negl Trop Dis 13 (11). https://doi.org/10.1371/journal.pntd.0007698

  120. Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 2015;5:770. https://doi.org/10.3389/fmicb.2014.00770.

    Article  Google Scholar 

  121. Bartosik M, Durikova H, Vojtesek B, Anton M, Jandakova E, Hrstka R. Electrochemical chip-based genomagnetic assay for detection of high-risk human papillomavirus DNA. Biosens Bioelectron. 2016;83:300–5. https://doi.org/10.1016/j.bios.2016.04.035.

    Article  CAS  Google Scholar 

  122. Izadi N, Sebuyoya R, Moranova L, Hrstka R, Anton M, Bartosik M. Electrochemical bioassay coupled to LAMP reaction for determination of high-risk HPV infection in crude lysates. Anal Chim Acta. 2021;1187: 339145. https://doi.org/10.1016/j.aca.2021.339145.

    Article  CAS  Google Scholar 

  123. Bartosik M, Jirakova L, Anton M, Vojtesek B, Hrstka R. Genomagnetic LAMP-based electrochemical test for determination of high-risk HPV16 and HPV18 in clinical samples. Anal Chim Acta. 2018;1042:37–43. https://doi.org/10.1016/j.aca.2018.08.020.

    Article  CAS  Google Scholar 

  124. Anton M, Moranova L, Hrstka R, Bartosik M. Application of an electrochemical LAMP-based assay for screening of HPV16/HPV18 infection in cervical samples. Anal Methods. 2020;12(6):822–9. https://doi.org/10.1039/c9ay02383f.

    Article  CAS  Google Scholar 

  125. Zhi X, Deng M, Yang H, Gao G, Wang K, Fu H, Zhang Y, Chen D, Cui D. A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors. Biosens Bioelectron. 2014;54:372–7. https://doi.org/10.1016/j.bios.2013.11.025.

    Article  CAS  Google Scholar 

  126. Leonardo S, Toldra A, Campas M. Biosensors based on isothermal DNA amplification for bacterial detection in food safety and environmental monitoring Sensors. 2021;21(2):602. https://doi.org/10.3390/s21020602.

    Article  CAS  Google Scholar 

  127. Huang TT, Liu SC, Huang CH, Lin CJ, Huang ST. An integrated real-time electrochemical LAMP device for pathogenic bacteria detection in food. Electroanalysis. 2018;30(10):2397–404. https://doi.org/10.1002/elan.201800382.

    Article  CAS  Google Scholar 

  128. Liu X, Zhang C, Zhao M, Liu K, Li H, Li N, Gao L, Yang X, Ma T, Zhu J, Hui W, Hua K, Cui Y. A direct isothermal amplification system adapted for rapid SNP genotyping of multifarious sample types. Biosens Bioelectron. 2018;115:70–6. https://doi.org/10.1016/j.bios.2018.05.021.

    Article  CAS  Google Scholar 

  129. Ren Y, Li Y, Duan X, Wang H, Wang H, Li Z. One-step quantitative single nucleotide polymorphism (SNP) diagnosis by modified loop-mediated isothermal amplification (mLAMP). ChemistrySelect. 2019;4(4):1423–7. https://doi.org/10.1002/slct.201802693.

    Article  CAS  Google Scholar 

  130. Ikeda S, Takabe K, Inagaki M, Funakoshi N, Suzuki K. Detection of gene point mutation in paraffin sections using in situ loop-mediated isothermal amplification. Pathol Int. 2007;57(9):594–9. https://doi.org/10.1111/j.1440-1827.2007.02144.x.

    Article  CAS  Google Scholar 

  131. Ortiz M, Jauset-Rubio M, Kodr D, Simonova A, Hocek M, O’Sullivan CK. Solid-phase recombinase polymerase amplification using ferrocene-labelled dNTPs for electrochemical detection of single nucleotide polymorphisms. Biosens Bioelectron. 2022;198: 113825. https://doi.org/10.1016/j.bios.2021.113825.

    Article  CAS  Google Scholar 

  132. Yang J, Wu R, Li Y, Wang Z, Pan L, Zhang Q, Lu Z, Zhang C. Entropy-driven DNA logic circuits regulated by DNAzyme. Nucleic Acids Res. 2018;46(16):8532–41. https://doi.org/10.1093/nar/gky663.

    Article  CAS  Google Scholar 

  133. Thapa K, Liu W, Wang R. Nucleic acid-based electrochemical biosensor: recent advances in probe immobilization and signal amplification strategies. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(1): e1765. https://doi.org/10.1002/wnan.1765.

    Article  CAS  Google Scholar 

  134. Wang M, Zhang R, Li J. CRISPR/cas systems redefine nucleic acid detection: principles and methods. Biosens Bioelectron. 2020;165: 112430. https://doi.org/10.1016/j.bios.2020.112430.

    Article  CAS  Google Scholar 

  135. van Dongen JE, Berendsen JTW, Steenbergen RDM, Wolthuis RMF, Eijkel JCT, Segerink LI. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosens Bioelectron. 2020;166: 112445. https://doi.org/10.1016/j.bios.2020.112445.

    Article  CAS  Google Scholar 

  136. Phan QA, Truong LB, Medina-Cruz D, Dincer C, Mostafavi E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens Bioelectron. 2022;197: 113732. https://doi.org/10.1016/j.bios.2021.113732.

    Article  CAS  Google Scholar 

  137. Yang Y, Yang J, Gong F, Zuo P, Tan Z, Li J, Xie C, Ji X, Li W, He Z. Combining CRISPR/Cas12a with isothermal exponential amplification as an ultrasensitive sensing platform for microRNA detection. Sens Actuators B Chem. 2022;367: 132158. https://doi.org/10.1016/j.snb.2022.132158.

    Article  CAS  Google Scholar 

  138. Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A, Smith K, Hajian R, Gasiunas G, Kutanovas S, Kim D, Parkinson J, Dickerson K, Ripoll J-J, Peytavi R, Lu H-W, Barron F, Goldsmith BR, Collins PG, Conboy IM, Siksnys V, Aran K. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng. 2021;5(7):713–25. https://doi.org/10.1038/s41551-021-00706-z.

    Article  CAS  Google Scholar 

  139. Diaz-Fernandez A, Lorenzo-Gomez R, Miranda-Castro R, de-los-Santos-Alvarez N, Lobo-Castanon MJ,. Electrochemical aptasensors for cancer diagnosis in biological fluids – a review. Anal Chim Acta. 2020;1124:1–19. https://doi.org/10.1016/j.aca.2020.04.022.

    Article  CAS  Google Scholar 

  140. Campuzano S, Yanez-Sedeno P, Pingarrón JM. Electrochemical genosensing of circulating biomarkers Sensors. 2017;17(4):866. https://doi.org/10.3390/s17040866.

    Article  CAS  Google Scholar 

  141. Huang Y, Zhu J, Li G, Chen Z, Jiang J-H, Shen G-L, Yu R-Q. Electrochemical detection of point mutation based on surface hybridization assay conjugated allele-specific polymerase chainreaction. Biosens Bioelectron. 2013;42:526–31. https://doi.org/10.1016/j.bios.2012.10.033.

    Article  CAS  Google Scholar 

  142. Nilyanimit P. Comparison of detection sensitivity for human papillomavirus between self-collected vaginal swabs and physician-collected cervical swabs by electrochemical DNA chip. Asian Pac J Cancer Prev. 2014;15(24):10809–12. https://doi.org/10.7314/APJCP.2014.15.24.10809.

    Article  Google Scholar 

  143. Quinchia J, Echeverri D, Cruz-Pacheco AF, Maldonado ME, Orozco J. Electrochemical biosensors for determination of colorectal tumor biomarkers. Micromachines. 2020;11(4):411. https://doi.org/10.3390/mi11040411.

    Article  Google Scholar 

  144. Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protoc. 2016;11(7):1244–63. https://doi.org/10.1038/nprot.2016.071.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Czech Health Research Council (project no. NU21-08–00078), by the project National Institute for Cancer Research (Programme EXCELES, ID Project No. LX22NPO5102)—funded by the European Union—Next Generation EU, by the European Regional Development Fund (project BBMRI-CZ.: Biobank network – a versatile platform for the research of the etiopathogenesis of diseases, reg. no. CZ.02.1.01/0.0/0.0/16_013/0001674), and by the project BBMRI-CZ no. LM2018125, and MH CZ—DRO (MMCI, 00209805).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Martin Bartosik. Literature search: Katerina Ondraskova, Ravery Sebuyoya, and Ludmila Moranova. Writing—original draft preparation: Katerina Ondraskova, Ravery Sebuyoya, Ludmila Moranova, Jitka Holcakova, Petr Vonka, and Martin Bartosik. Writing—review and editing: Katerina Ondraskova, Ravery Sebuyoya, Ludmila Moranova, Jitka Holcakova, Petr Vonka, Roman Hrstka, and Martin Bartosik. Funding acquisition: Roman Hrstka and Martin Bartosik. Supervision: Martin Bartosik.

Corresponding author

Correspondence to Martin Bartosik.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Electrochemical Biosensors – Driving Personalized Medicine with guest editors Susana Campuzano Ruiz and Maria Jesus Lobo-Castañón.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ondraskova, K., Sebuyoya, R., Moranova, L. et al. Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal Bioanal Chem 415, 1065–1085 (2023). https://doi.org/10.1007/s00216-022-04388-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04388-7

Keywords

Navigation