Skip to main content
Log in

Theoretical and practical comparison of RPLC and RPLC × RPLC: how to consider dilution effects and sensitivity in addition to separation power?

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The objective of this work was to provide an unbiased comparison of one-dimensional reversed-phase liquid chromatography (1D-RPLC) and comprehensive two-dimensional RPLC (RPLC × RPLC), through calculations and experimental verifications. For this purpose, various quality descriptors were evaluated, including peak capacity, analysis time, dilution factor, number of runs in the second dimension, and injection volume. The same strategy was applied to small pharmaceuticals and peptides. Whatever the analysis time between 30 and 200 min, short columns of only 30 × 2.1 mm packed with sub-2-µm particles should be selected in both dimensions of the 2D-LC setup to obtain the best compromise in terms of peak capacity and sensitivity. The peak capacity in RPLC × RPLC vs. RPLC was significantly improved for analysis times beyond 5 min. However, extra-column volume located after the second-dimension column was found to be particularly critical for peptides, and up to 50% lower peak capacity was observed with MS vs. UV detection. Contrary to common belief, higher dilution is not always observed in RPLC × RPLC. With adequate analytical conditions, better sensitivity (in theory fivefold and in practice three- to fivefold) could be achieved in RPLC × RPLC compared to 1D-RPLC, regardless of the analysis time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fekete S, Olah E, Fekete J. Fast liquid chromatography: the domination of core-shell and very fine particles. J Chromatogr A. 2012;1228:57–71.

    Article  CAS  PubMed  Google Scholar 

  2. Guiochon G. Monolithic columns in high-performance liquid chromatography. J Chromatogr A. 2007;1168:101–68.

    Article  CAS  PubMed  Google Scholar 

  3. Heinisch S, Rocca JL. Sense and nonsense of high-temperature liquid chromatography. J Chromatogr A. 2009;1216:642–58.

    Article  CAS  PubMed  Google Scholar 

  4. De Pauw R, Degreef B, Ritchie H, Eeltink S, Desmet G, Broeckhoven K. J Chromatogr A. 2014;1347:56–62.

    Article  CAS  PubMed  Google Scholar 

  5. Fekete S, Kohler I, Rudaz S, Guillarme D. Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J Pharm Biomed Anal. 2014;87:105–19.

    Article  CAS  PubMed  Google Scholar 

  6. Pirok B, Gargano AFG, Schoenmakers PJ. Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci. 2018;41:68–98.

    Article  CAS  PubMed  Google Scholar 

  7. Stoll DR, Carr PW. Two-dimensional liquid chromatography: A state of the art tutorial. Anal Chem. 2017;89:519–31.

    Article  CAS  PubMed  Google Scholar 

  8. Barhate CL, Regalado EL, Contrella ND, Lee J, Jo J, Makarov AA, Armstrong DW, Welch CJ. Ultrafast chiral chromatography as the second dimension in two-dimensional liquid chromatography experiments. Anal Chem. 2017;89:3545–53.

    Article  CAS  PubMed  Google Scholar 

  9. Sarrut M, Rouviere F, Heinisch S. Theoretical and experimental comparison of one dimensional versus on-line comprehensive two dimensional liquid chromatography for optimized sub-hour separations of complex peptide samples. J Chromatogr A. 2017;1498:183–95.

    Article  CAS  PubMed  Google Scholar 

  10. Saint-Germain FM, Faure K, Saunier E, Lerestif JM, Heinisch S. On-line 2D-RPLC x RPLC – HRMS to assess wastewater treatment in a pharmaceutical plant. J Pharm Biomed Anal. 2022;208: 114465.

    Article  CAS  PubMed  Google Scholar 

  11. Montero L, Herrero M. Two-dimensional liquid chromatography approaches in Foodomics – A review. Anal Chim Acta. 2019;1083:1–18.

    Article  CAS  PubMed  Google Scholar 

  12. Willemse CM, Stander MA, Tredoux AGJ, De Villiers A. Comprehensive two-dimensional liquid chromatographic analysis of anthocyanins. J Chromatogr A. 2014;1359:189–201.

    Article  CAS  PubMed  Google Scholar 

  13. Muehlwald S, Meyburg N, Rohn S, Buchner N. A Comparison between a two-dimensional liquid chromatography system and a traditional QuEChERS-LC method with regard to matrix removal and matrix effects in pesticide analysis using time-of-flight mass spectrometry. J Agric Food Chem. 2021;69:15005–19.

    Article  CAS  PubMed  Google Scholar 

  14. Iguiniz M, Heinisch S. Two-dimensional liquid chromatography in pharmaceutical analysis. Instrumental aspects, trends and applications. J Pharm Biomed Anal. 2017;145:482–503.

    Article  CAS  PubMed  Google Scholar 

  15. Sarrut M, D’Attoma A, Heinisch S. Optimization of conditions in on-line comprehensive two-dimensional reversed phase liquid chromatography. Experimental comparison with one-dimensional reversed phase liquid chromatography for the separation of peptides. J Chromatogr A. 2015;1421:48–59.

    Article  CAS  PubMed  Google Scholar 

  16. Vanhoutte DJD, Vivo-Truyols G, Schoenmakers PJ. Pareto-optimality study into the comparison of the separation potential of comprehensive two-dimensional liquid chromatography in the column and spatial modes. J Chromatogr A. 2012;1235:39–48.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu K, Pursch M, Eletink S, Desmet G. Maximizing two-dimensional liquid chromatography peak capacity for the separation of complex industrial samples. J Chromatogr A. 2020;1609: 460457.

    Article  CAS  PubMed  Google Scholar 

  18. Stoll DR, Lhotka HR, Harmes DC, Madigan B, Hsiao JJ, Staples GO. High resolution two-dimensional liquid chromatography coupled with mass spectrometry for robust and sensitive characterization of therapeutic antibodies at the peptide level. J Chromatogr B. 2019;1134: 121832.

    Article  Google Scholar 

  19. Schure MR. Limit of detection, dilution factors, and technique compatibility in multidimensional separations utilizing chromatography, capillary electrophoresis, and field-flow fractionation. Anal Chem. 1999;71:1645–57.

    Article  CAS  Google Scholar 

  20. Vivo-TRuyols G, Van Der Wal SJ, Schoenmakers PJ. Comprehensive study on the optimization of online two-dimensional liquid chromatographic systems considering losses in theoretical peak capacity in first- and second-dimensions: a Pareto-optimality approach. Anal Chem. 2010;82:8525–36.

    Article  CAS  PubMed  Google Scholar 

  21. Gargano AFG, Duffin M, Navarro P, Schoenmakers PJ. Reducing dilution and analysis time in online comprehensive two-dimensional liquid chromatography by active modulation. Anal Chem. 2016;88:1785–93.

    Article  CAS  PubMed  Google Scholar 

  22. Chapel S, Rouviere F, Heinisch S. A theoretical and practical approach to manage high peak capacity and low dilution in on-line comprehensive reversed-phase LC × reversed-phase LC: a comparison with 1D-reversed-phase LC. LC-GC supplements. 2020;33:17–26.

    Google Scholar 

  23. Sternberg JC. In: Giddings JC, Keller RA, editors. Advances in chromatography, vol. 2. New York: Dekker; 1966. p. 205.

    Google Scholar 

  24. Groskreutz SR, Weber SG. Quantitative evaluation of models for solvent-based, on-column focusing in liquid chromatography. J Chromatogr A. 2015;1409:116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chapel S, Rouviere F, Peppermans V, Desmet G, Heinisch S. J Chromatogr A. 2021;1653: 462399.

    Article  CAS  PubMed  Google Scholar 

  26. Snyder LR, Dolan JW, Gant JR. Gradient elution in high-performance liquid chromatography. I. Theoretical basis for reversed-phase systems. J Chromatogr A. 1979;165:3–30.

    Article  CAS  Google Scholar 

  27. Chapel S, Rouvière F, Heinisch S. Pushing the limits of resolving power and analysis time in on-line comprehensive hydrophilic interaction x reversed phase liquid chromatography for the analysis of complex peptide samples. J Chromatogr A. 2020;1615: 460753.

    Article  CAS  PubMed  Google Scholar 

  28. Guillarme D, Heinisch S, Rocca JL. Effect of temperature in reversed phase liquid chromatography. J Chromatogr A. 2004;1052:39–51.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy R, Schure MR, Foley JP. Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem. 1998;70:1585–94.

    Article  CAS  Google Scholar 

  30. D’Attoma A, Heinisch S. On-line comprehensive two dimensional separations of charged compounds using reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography. Part II: Application to the separation of peptides. J Chromatogr A. 2013;1306:27–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Heinisch.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Comprehensive 2D Chromatography with guest editors Peter Q. Tranchida and Luigi Mondello.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2485 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillarme, D., Rouvière, F. & Heinisch, S. Theoretical and practical comparison of RPLC and RPLC × RPLC: how to consider dilution effects and sensitivity in addition to separation power?. Anal Bioanal Chem 415, 2357–2369 (2023). https://doi.org/10.1007/s00216-022-04385-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04385-w

Keywords

Navigation