Skip to main content
Log in

Expanding the utility of Marfey’s analysis by using HPLC-SPE-NMR to determine the Cβ configuration of threonine and isoleucine residues in natural peptides

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Cite this article

Abstract

The determination of amino acid chirality in natural peptides is typically addressed by Marfey’s analysis. This approach relies on the complete hydrolysis of the peptide followed by the reaction of the resulting amino acid pool with Marfey’s reagent, a chiral derivatizing agent which turns amino acid enantiomers into diastereomeric pairs which can be resolved by conventional reversed-phase HPLC. However, for certain amino acids possessing a second chiral centre at Cβ, the discrimination between the two possible epimers may still be challenging due to the lack of chromatographic resolution. Such is the case of isoleucine and threonine which can also be found in natural nonribosomal peptides as their allo-diastereomers. We describe a new approach based on the extension of Marfey’s analysis using HPLC-SPE-NMR to sort out this challenge. Marfey’s derivatives of these epimeric amino acids at Cβ can be differentiated by their distinct NMR spectra. Thus, simple comparison of the NMR spectra of trapped HPLC peaks with the corresponding spectra of standards enables the unambiguous assignment of the absolute configuration at the second chiral centre in such cases. The general applicability of this approach is showcased for two model cyclic peptides bearing L-Ile and L-Thr.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walsh CT, O’Brien RV, Khosla C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed. 2013;52(28):7098–124.

    Article  CAS  Google Scholar 

  2. Hedges JB, Ryan KS. Biosynthetic pathways to nonproteinogenic α-amino acids. Chem Rev. 2020;120(6):3161–209.

    Article  CAS  PubMed  Google Scholar 

  3. Götze S, Stallforth P. Structure elucidation of bacterial nonribosomal lipopeptides. Org Biomol Chem. 2020;18(9):1710–27.

    Article  PubMed  Google Scholar 

  4. Marfey P. Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun. 1984;49(6):591.

    Article  CAS  Google Scholar 

  5. Bhushan R, Brückner H. Marfey’s reagent for chiral amino acid analysis: a review. Amino Acids. 2004;27(3–4):231–47.

    Article  CAS  PubMed  Google Scholar 

  6. Bhushan R, Brückner H. Use of Marfey’s reagent and analogs for chiral amino acid analysis: assessment and applications to natural products and biological systems. J Chromatogr B. 2011;879(29):3148–61.

    Article  CAS  Google Scholar 

  7. Sethi S, Martens J, Bhushan R. Assessment and application of Marfey’s reagent and analogs in enantioseparation: a decade’s perspective. Biomed Chromatogr. 2021;35(1):e4990.

    Article  CAS  PubMed  Google Scholar 

  8. Fujii K, Ikai Y, Mayumi T, Oka H, Suzuki M, Harada K-i. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: elucidation of limitations of Marfey’s method and of its separation mechanism. Anal Chem. 1997;69(16):3346–52.

    Article  CAS  Google Scholar 

  9. Fujii K, Ikai Y, Oka H, Suzuki M, Harada K-i. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: combination of Marfey’s method with mass spectrometry and its practical application. Anal Chem. 1997;69(24):5146–51.

    Article  CAS  Google Scholar 

  10. Arrault A, Witczak-Legrand A, Gonzalez P, Bontemps-Subielos N, Banaigs B. Structure and total synthesis of cyclodidemnamide B, a cycloheptapeptide from the ascidian Didemnum molle. Tetrahedron Lett. 2002;43(22):4041–4.

    Article  CAS  Google Scholar 

  11. Capon RJ, Skene C, Stewart M, Ford J, O’Hair RAJ, Williams L, et al. Aspergillicins A-E: five novel depsipeptides from the marine-derived fungus Aspergillus carneus. Org Biomol Chem. 2003;1(11):1856–62.

    Article  CAS  PubMed  Google Scholar 

  12. Hess S, Gustafson KR, Milanowski DJ, Alvira E, Lipton MA, Pannell LK. Chirality determination of unusual amino acids using precolumn derivatization and liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A. 2004;1035(2):211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ratnayake R, Fremlin LJ, Lacey E, Gill JH, Capon RJ. Acremolides A−D, lipodepsipeptides from an Australian marine-derived fungus, Acremonium sp.⊥. J Nat Prod. 2008;71(3):403–8.

  14. Vijayasarathy S, Prasad P, Fremlin LJ, Ratnayake R, Salim AA, Khalil Z, et al. C3 and 2D C3 Marfey’s methods for amino acid analysis in natural products. J Nat Prod. 2016;79(2):421–7.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou T, Katsuragawa M, Xing T, Fukaya K, Okuda T, Tokiwa T, et al. Cyclopeptides from the mushroom pathogen fungus Cladobotryum varium. J Nat Prod. 2021;84(2):327–38.

    Article  CAS  PubMed  Google Scholar 

  16. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517(7535):455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pérez-Victoria I, Martín J, González-Menéndez V, de Pedro N, El Aouad N, Ortiz-López FJ, et al. Isolation and structural elucidation of cyclic tetrapeptides from Onychocola sclerotica. J Nat Prod. 2012;75(6):1210–4.

    Article  PubMed  Google Scholar 

  18. Balkovec JM, Hughes DL, Masurekar PS, Sable CA, Schwartz RE, Singh SB. Discovery and development of first in class antifungal caspofungin (CANCIDAS®)—a case study. Nat Prod Rep. 2014;31(1):15–34.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt JS, Lauridsen MB, Dragsted LO, Nielsen J, Staerk D. Development of a bioassay-coupled HPLC-SPE-ttNMR platform for identification of α-glucosidase inhibitors in apple peel (Malus × domestica Borkh.). Food Chem. 2012;135(3):1692–9.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, De Leon Rodriguez LM, Lacey E, Piggott AM, Leung IKH, Brimble MA. Cyclization of linear tetrapeptides containing N-methylated amino acids by using 1-propanephosphonic acid anhydride. Eur J Org Chem. 2017;2017(1):149–58.

    Article  CAS  Google Scholar 

  21. Leonard WR, Belyk KM, Conlon DA, Bender DR, DiMichele LM, Liu J, et al. Synthesis of the antifungal β-1,3-glucan synthase inhibitor CANCIDAS (caspofungin acetate) from pneumocandin B0. J Org Chem. 2007;72(7):2335–43.

    Article  CAS  PubMed  Google Scholar 

  22. Mizutani K, Hirasawa Y, Sugita-Konishi Y, Mochizuki N, Morita H. Structural and conformational analysis of hydroxycyclochlorotine and cyclochlorotine, chlorinated cyclic peptides from Penicillium islandicum. J Nat Prod. 2008;71(7):1297–300.

    Article  CAS  PubMed  Google Scholar 

  23. Bewley CA, He H, Williams DH, Faulkner DJ. Aciculitins A−C: cytotoxic and antifungal cyclic peptides from the lithistid sponge Aciculites orientalis. J Am Chem Soc. 1996;118(18):4314–21.

    Article  CAS  Google Scholar 

  24. Seger C, Godejohann M, Spraul M, Stuppner H, Hadacek F. Reaction product analysis by high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance: application to the absolute configuration determination of naturally occurring polyyne alcohols. J Chromatogr A. 2006;1136(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  25. Molinski TF. NMR of natural products at the ‘nanomole-scale.’ Nat Prod Rep. 2010;27(3):321–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work of the authors is supported by Fundación MEDINA, a non-profit partnership between Merck Sharp and Dohme de España, the Regional Government of Andalusia and the University of Granada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Pérez-Victoria.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1123 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Victoria, I., Crespo, G. & Reyes, F. Expanding the utility of Marfey’s analysis by using HPLC-SPE-NMR to determine the Cβ configuration of threonine and isoleucine residues in natural peptides. Anal Bioanal Chem 414, 8063–8070 (2022). https://doi.org/10.1007/s00216-022-04339-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04339-2

Keywords

Navigation