Skip to main content
Log in

Construction of cellulose-based highly sensitive extended-gate field effect chiral sensor

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chiral recognition is an emerging field of modern chemical analysis, and the development of health-related fields depends on the production of enantiomers. Cellulose is a kind of natural polymer material with certain chiral recognition ability. Limited by the chiral recognition ability of natural cellulose itself, more cellulose derivatives have been gradually developed for chiral recognition and separation. Based on the difference in action between cellulose derivatives and enantiomers, this work synthesized cellulose-tris(4-methylphenylcarbamate) (CMPC) chiral recognition mediators and a CMPC-functionalized extended-gate organic field effect transistor (EG-OFET) was constructed for the first time. Three chiral molecules were selected as model analytes to evaluate the enantiomeric recognition ability of the platform, including threonine (Thr), 2-chloromandelic acid (CA), and 1,2-diphenylethylenediamine (DPEA). The detection limit for 1,2-diphenylethylenediamine (DPEA) is down to 10−13 M. Through the amplification effect of the EG-OFET platform, the difference in the interaction between CMPC and three chiral molecules with different structures is converted into a current signal output. At the same time, the enantiomer discrimination mechanism of CMPC was further studied by means of spectroscopy and nuclear magnetic resonance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang ZQ, Liu JD, Chen W, Bai ZW. Enantioseparation characteristics of biselector chiral stationary phases based on derivatives of cellulose and amylose [J]. J Chromatogr A. 2014;1346:57–68.

    Article  CAS  PubMed  Google Scholar 

  2. Ward TJ, Ward KD. Chiral separations: a review of current topics and trends[J]. Anal Chem. 2012;84(2):626–35.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu QF, Scriba GKE. Advances in the use of cyclodextrins as chiral selectors in capillary electrokinetic chromatography: fundamentals and applications [J]. Chromatographia. 2016;79(21–22):1403–35.

    Article  CAS  Google Scholar 

  4. Ali I, Suhail M, Al-Othman ZA, Alwarthan A, Aboul-Enein HY. Enantiomeric resolution of multiple chiral centers racemates by capillary electrophoresis [J]. Biomed Chromatogr. 2016;30(5):683–94.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu HTZ, Li Q, Gao ZC, Wang HL, Shi BB, Wu YT, et al. Pillararene host-guest complexation induced chirality amplification: a new way to detect cryptochiral compounds [J]. Angew Chem Int Ed. 2020;59(27):10868–72.

    Article  CAS  Google Scholar 

  6. Alwera S, Alwera V, Sehlangia S. An efficient method for the determination of enantiomeric purity of racemic amino acids using micellar chromatography, a green approach [J]. Biomed Chromatogr. 2020;34(11):e4943.

    Article  CAS  PubMed  Google Scholar 

  7. Bao JJ, Jia F, Li Y, Liang Q, Wang Y. Synthesis and applications of sulfopropyl ether gamma-cyclodextrin polymer as chiral selector in capillary electrophoresis [J]. Anal Bioanal Chem. 2016;408(13):3639–49.

    Article  CAS  PubMed  Google Scholar 

  8. Mohankumar P, Ajayan J, Mohanraj T, Yasodharan R. Recent developments in biosensors for healthcare and biomedical applications: a review [J]. Measurement. 2021;167:108293.

    Article  Google Scholar 

  9. Pedroza Dias Mello HJN, Bachour Junior B, Mulato M. Polyanine-based field effect transistor for DNA/RNA biomarker sensing: comparison to electrochemical impedance and inorganic layer [J]. Sensors Actuators A Phys. 2021;318:112481.

    Article  Google Scholar 

  10. Pan TM, Lin CH. High performance NiOx extended-gate field-effect transistor biosensor for detection of uric acid [J]. J Electrochem Soc. 2021;168(1):017511.

    Article  CAS  Google Scholar 

  11. Mulla MY, Tuccori E, Magliulo M, Lattanzi G, Palazzo G, Persaud K, et al. Capacitance-modulated transistor detects odorant binding protein chiral interactions [J]. Nat Commun. 2015;6:6010.

    Article  CAS  PubMed  Google Scholar 

  12. Torricelli F, Adrahtas D Z, Bao Z N, Berggren M, Biscarini F, Bonfiglio A, et al. Electrolyte-gated transistors for enhanced performance bioelectronics [J]. Nat Rev Methods Primers. 2021;1:66.

  13. Sun YW, Wang Y, Wu YF, Wang XP, Li XG, Wang SY, et al. A chiral organic field-effect transistor with a cyclodextrin modulated copper hexadecafluorophthalocyanine semiconductive layer as the sensing unit [J]. Anal Chem. 2018;90(15):9264–71.

    Article  CAS  PubMed  Google Scholar 

  14. Iskierko Z, Checinska A, Sharma PS, Golebiewska K, Noworyta K, Borowicz P, et al. Molecularly imprinted polymer based extended-gate field-effect transistor chemo sensors for phenylalanine enantioselective sensing [J]. J Mater Chem C. 2017;5(4):969–77.

    Article  CAS  Google Scholar 

  15. Pullano SA, Critello CD, Mahbub I, Tasneem NT, Shamsir S, Islam SK, et al. EGFET-based sensors for bioanalytical applications: a review [J]. Sensors. 2018;18(11):4042.

    Article  PubMed  PubMed Central  Google Scholar 

  16. He Y, Pang H, Liao B. Progress in cellulose-based chiral stationary phases [J]. Prog Chem. 2006;18(7):957–65.

    CAS  Google Scholar 

  17. Wang XP, Li H, Quan KJ, Zhao L, Qiu HD, Li ZG. Preparation and applications of cellulose-functionalized chiral stationary phases: a review [J]. Talanta. 2021;225:121987.

    Article  CAS  PubMed  Google Scholar 

  18. Chenl X, Yamamoto C, Okamoto Y. Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography [J]. Pure Appl Chem. 2007;79(9):1561–73.

    Article  Google Scholar 

  19. Li L, Yuan X, Shi ZG, Xu LY. Chiral stationary phase based on cellulose derivative coated polymer microspheres and its separation performance [J]. J Chromatogr A. 2020;1623:461154.

    Article  CAS  PubMed  Google Scholar 

  20. Agathokleous EA, Stavrou IJ, Kapnissi-Christodoulou C. Comparison of cyclofructan-, cyclodextrin-, and polysaccharide-based chiral stationary phases for the separation of pharmaceuticals[J]. Anal Bioanal Chem. 2022;414(3):1323–33.

    Article  CAS  PubMed  Google Scholar 

  21. Li WZ, Zhang WQ, Zhao QY, Li YM, Ma CL, Chen LR, et al. Direct optical resolution of the enantiomers of novel chiral tetrahedral metal clusters by HPLC on a cellulose tris-(3,5-dimethylphenylcarbamate) stationary phase [J]. Anal Bioanal Chem. 2004;378(5):1364–8.

    Article  CAS  PubMed  Google Scholar 

  22. Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F. Recent applications in chiral high performance liquid chromatography: a review [J]. Anal Chim Acta. 2011;706(2):205–22.

    Article  CAS  PubMed  Google Scholar 

  23. Felix G. Regioselectively modified polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography [J]. J Chromatogr A. 2001;906(1):171–84.

    Article  CAS  PubMed  Google Scholar 

  24. Shen J, Wang F, Bi W, Liu B, Liu SY, Okamoto Y. Synthesis of cellulose carbamates bearing regioselective substituents at 2,3-and 6-positions for efficient chromatographic enantioseparation [J]. J Chromatogr A. 2018;1572:54–61.

    Article  CAS  PubMed  Google Scholar 

  25. Yin CC, Yang TT, Zhang JM, Zhang J. Homogeneous synthesis of cellulose phenylcarbamates and evaluation of their enantioseparation capabilities [J]. Chin J Chromatogr. 2020;38(4):476–83.

    CAS  Google Scholar 

  26. Yin CC, Zhang JM, Chang LM, Zhang M, Yang TT, Zhang XC, et al. Regioselectively substituted cellulose mixed esters synthesized by two-steps route to understand chiral recognition mechanism and fabricate high-performance chiral stationary phases [J]. Anal Chim Acta. 2019;1073:90–8.

    Article  CAS  PubMed  Google Scholar 

  27. Chen WW, Zhang M, Feng Y, Wu J, Gao X, Zhang JM, et al. Homogeneous synthesis of partially substituted cellulose phenylcarbamates aiming at chiral recognition [J]. Polym Int. 2015;64(8):1037–44.

    Article  CAS  Google Scholar 

  28. Zhang JJ, Wang SY, Zhang P, Fan SC, Dai HT, Xiao Y, et al. Engineering a cationic supramolecular charge switch for facile amino acids enantiodiscrimination based on extended-gate field effect transistors [J]. Chin Chem Lett. 2022. https://doi.org/10.1016/j.cclet.2021.11.081.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially funded by the National Key R&D Program of China (No. 2019YFC1905500), the National Natural Science Foundation of China (Nos. 21922409, 21976131), and the Tianjin Research Program of Application Foundation and Advanced Technology (No. 18JCZDJC37500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Tao Dai or Yong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1702 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JJ., Wang, SY., Dai, HT. et al. Construction of cellulose-based highly sensitive extended-gate field effect chiral sensor. Anal Bioanal Chem 415, 4245–4254 (2023). https://doi.org/10.1007/s00216-022-04306-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04306-x

Keywords

Navigation