Skip to main content

Advertisement

Log in

A FRET sensor based on quantum dots–porphyrin assembly for Fe(III) detection with ultra-sensitivity and accuracy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Exploring sensors based on Förster resonance energy transfer (FRET) systems enables the continuous development of biological sensing technologies. Herein, we report the construction of a FRET sensor with dual-emissive quantum dots (QDs) and meso-tetra(4-sulfonatophenyl) porphine (TSPP). The sensor is composed of mesial green-emissive QDs with a thick silica shell (gQD@SiO2) and circumjacent blue-emissive QDs coated with ultra-thin silica spacer, on which is linked TSPP (bQD@SiO2-TSPP). The gQD@SiO2 endows the sensor with a fluorescent background. Due to the ultra-thin silica spacing, coupled with the superior resonance effect of bQD fluorescence and the Soret-band absorption of TSPP, the FRET efficiency is highly sensitive to the chelation state of TSPP. Relying on the absorbance transition of TSPP complexed with Fe(III), the FRET sensor is applied for ultra-sensitive Fe(III) detection. In aqueous solution, the sensor is demonstrated to linearly detect Fe(III) in the range of 0–1 μM, with a limit of detection (LOD) of 40 nM. More importantly, reliable Fe(III) detection can be achieved via the specific complexation of Fe(III) by TSPP and the ratiometric fluorescent response. As such, the inter-/intra-day precisions in standard samples, as well as the recovery rate in biological matrices, are fully validated. The excellent analytical performance, in combination with the excellent biocompatibility of the FRET sensor, allows semi-quantitative Fe(III) imaging in living cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park JM, Hong KI, Lee H, Jang WD. Bioinspired applications of porphyrin derivatives. Acc Chem Res. 2021;54:2249–60.

    Article  CAS  PubMed  Google Scholar 

  2. Valicsek Z, Horvath O. Application of the electronic spectra of porphyrins for analytical purposes: the effects of metal ions and structural distortions. Microchem J. 2013;107:47–62.

    Article  CAS  Google Scholar 

  3. Zhang XP, Lin B, Shu Y, Wang JH. “Switch-on” fluorescence sensing platform based on porphyrin metal-organic frameworks for rapid and specific detection of zinc ion. Anal Bioanal Chem. 2021;413:5161–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ding YB, Zhu WH, Xie YS. Development of ion chemosensors based on porphyrin analogues. Chem Rev. 2017;117:2203–56.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang XA, Lovejoy KS, Jasanoff A, Lippard SJ. Water-soluble porphyrins imaging platform for MM zinc sensing. P Natl Acad Sci USA. 2007;104:10780–5.

    Article  CAS  Google Scholar 

  6. Almeda S, Gandolfi HE, Arce L, Valcarcel M. Potential of porphyrins as chromogenic reagents for determining metals in capillary electrophoresis. J Chromatogr A. 2009;1216:6256–8.

    Article  CAS  PubMed  Google Scholar 

  7. Monti D, Nardis S, Stefanelli M, Paolesse R, Di Natale C, D’Amico A. Porphyrin-based nanostructures for sensing applications. J Sensors. 2009;2009:856053.

    Article  Google Scholar 

  8. Zhang WJ, Peng J, Lu LM, Zhang J, Zhang XB. 2-(2′-Hydroxyphenyl)-4(3H)-quinazolinone derivatives based fluorescent probes for mercury(II) via an intramolecular proton transfer mechanism. Int J Environ An Ch. 2012;92:810–20.

    Article  CAS  Google Scholar 

  9. Qi DD, Zhang JH, Zhang DL, Zhu ML, Gong L, Su CR, Lu WX, Bian YZ, Jiang JZ. A phthalocyanine-porphyrin triad for ratiometric fluorescent detection of lead(II) ions. Dyes Pigments. 2020;173:107941.

    Article  CAS  Google Scholar 

  10. Zhao LZ, Zhao YX, Li RS, Wu DH, Xu R, Li SS, Zhang YZ, Ye H, Xin QP. A porphyrin-based optical sensor membrane prepared by electrostatic self-assembled technique for online detection of cadmium(II). Chemosphere. 2020;238:124552.

    Article  CAS  PubMed  Google Scholar 

  11. Liu YQ, Seidi F, Deng C, Li RY, Xu TT, Xiao HN. Porphyrin derived dual-emissive carbon quantum dots: customizable synthesis and application for intracellular Cu2+ quantification. Sensor Actuat B-Chem. 2021;343:130072.

    Article  CAS  Google Scholar 

  12. Qiao T, Parobek D, Son DH. Photons and charges from colloidal doped semiconductor quantum dots. J Mater Chem C. 2019;7:14788–97.

    Article  CAS  Google Scholar 

  13. Chern M, Kays JC, Bhuckory S, Dennis AM. Sensing with photoluminescent semiconductor quantum dots. Methods Appl Fluores. 2019;7:012005.

    Article  CAS  Google Scholar 

  14. Wang Y, Huo DQ, Wu HX, Liu H, Li JJ, Yang M, Huang CH, Hou CJ. A ratiometric fluorescent assay for fluazinam based on FRET between CdTe quantum dots and porphyrin. NANO. 2017;12:1750128.

    Article  CAS  Google Scholar 

  15. Ingram JM, Zhang CF, Xu J, Schiff SJ. FRET excited ratiometric oxygen sensing in living tissue. J Neurosci Meth. 2013;214:45–51.

    Article  CAS  Google Scholar 

  16. Liu YQ, Qu XJ, Guo QS, Sun QJ, Huang XB. QD-biopolymer-TSPP assembly as efficient BiFRET sensor for ratiometric and visual detection of zinc ion. ACS Appl Mater Interfaces. 2017;9:4725–32.

    Article  CAS  PubMed  Google Scholar 

  17. Rajora MA, Lou JWH, Zheng G. Advancing porphyrin’s biomedical utility via supramolecular chemistry. Chem Soc Rev. 2017;46:6433–69.

    Article  CAS  PubMed  Google Scholar 

  18. Managa M, Ngoy BP, Nyokong T. Photophysical properties and photodynamic therapy activity of a meso-tetra(4-carboxyphenyl)porphyrin tetramethyl ester-graphene quantum dot conjugate. New J Chem. 2019;43:4518–24.

    Article  CAS  Google Scholar 

  19. Schlachter A, Asselin P, Harvey PD. Porphyrin-containing MOFs and COFs as heterogeneous photosensitizers for singlet oxygen-based antimicrobial nanodevices. ACS Appl Mater Interfaces. 2021;13:26651–72.

    Article  CAS  PubMed  Google Scholar 

  20. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: a brief overview. J Inorg Biochem. 2019;195:120–9.

    Article  CAS  PubMed  Google Scholar 

  21. Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of iron in the molecular pathogenesis of diseases and therapeutic opportunities. ACS Chem Biol. 2021;16:945–72.

    Article  CAS  PubMed  Google Scholar 

  22. Camarena V, Huff TC, Wang GF. Epigenomic regulation by labile iron. Free Radical Bio Med. 2021;170:44–9.

    Article  CAS  Google Scholar 

  23. Farhadi S, Zabardasti A, Rahmati MH. Manganese(III) porphyrin covalently bound to sol-gel derived silica (Mn(III) porphyrinosilica): a reusable and green heterogeneous photocatalyst for oxidative decarboxylation of alpha-arylacetic acids with H2O2. J Chem Res. 2011(3):157–60.

  24. Lee KH, Lee JH, Song WS, Ko H, Lee C, Lee JH, Yang H. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano. 2013;7:7295–302.

    Article  CAS  PubMed  Google Scholar 

  25. Aubert T, Soenen SJ, Wassmuth D, Cirillo M, Van Deun R, Braeckmans K, Hens Z. Bright and stable CdSe/CdS@SiO2 nanoparticles suitable for long-term cell labeling. ACS Appl Mater Interfaces. 2014;6:11714–23.

    Article  CAS  PubMed  Google Scholar 

  26. Freeman R, Willner I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev. 2012;41:4067–85.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu HT, Wang LN, Jie XM, Liu DD, Cao YM. Improved interfacial affinity and CO2 separation performance of asymmetric mixed matrix membranes by incorporating postmodified MIL-53(Al). ACS Appl Mater Interfaces. 2016;8:22696–704.

    Article  CAS  PubMed  Google Scholar 

  28. Valicsek Z, Ottó HO. Application of the electronic spectra of porphyrins for analytical purposes: the effects of metal ions and structural distortions. Microchem J. 2013;107:47–62.

    Article  CAS  Google Scholar 

  29. Rana M, Chowdhury P. L-Glutathione capped CdSeS/ZnS quantum dot sensor for the detection of environmentally hazardous metal ions. J Lumin. 2019;206:105–12.

    Article  CAS  Google Scholar 

  30. Jimenez HR, Julve M, Faus J. A solution study of the protonation and deprotonation equilibria of 5,10,15,20-tetra(para-sulphonatophenyl)porphyrin. Stability constants of its magnesium(II), copper(II) and zinc(II) complexes. J Chem Soc, Dalton Trans. 1991;8:1945–9.

    Article  Google Scholar 

  31. Li MF, Fang HB, Ji YF, Chen YC, He WJ, Guo ZJ. Rational design of ratiometric Fe3+ fluorescent probes based on FRET mechanism. Chem Res Chinese U. 2022;38:67–74.

    Article  CAS  Google Scholar 

  32. Zhang QX, Sun Y, Liu ML, Liu Y. Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. Nanoscale. 2020;12:1826–32.

    Article  CAS  PubMed  Google Scholar 

  33. Fontecave M, Pierre JL. Iron: Metabolism, toxicity and therapy. Biochimie. 1993;75:767–73.

    Article  CAS  PubMed  Google Scholar 

  34. Wu L, Guo QS, Liu YQ, Sun QJ. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn2+ using a dual-emission silica-coated quantum dots mixture. Anal Chem. 2015;87:5318–23.

    Article  CAS  PubMed  Google Scholar 

  35. Kielmann M, Senge MO. Molecular engineering of free-base porphyrins as ligands-the N-H center dot center dot center dot X binding motif in tetrapyrroles. Angew Chem Int Edit. 2019;58:418–41.

    Article  CAS  Google Scholar 

  36. Ishii H, Koh H. Analytical application of porphyrins-I spectrophotometric determination of ultramicro amounts of copper with α, β, γ, δ-tetra-(3-N-methylpyridyl)porphine. Talanta. 1977;24:417–20.

    Article  CAS  PubMed  Google Scholar 

  37. Liu KK, Zhang LN, Zhu LN, Zhang R, Li XZ, Kong DM. A water-soluble, cationic bis-porphyrin exhibiting a more sensitive fluorescent response to Cu2+ relative to its monomeric counterpart. Sens Actuat B-Chem. 2017;247:179–87.

    Article  CAS  Google Scholar 

  38. Ishi H, Tsuchiai H. Spectrophotometric and analogue derivative spectrophotometric determination of trace zinc with 5, 10, 15, 20-tetrakis(4-sulfophenyl)porphine in presence of high concentrations of cadmium. Anal Sci. 1987;3:229–33.

    Article  Google Scholar 

  39. Huszank R, Horvath O. A heme-like, water-soluble iron(II) porphyrin: thermal and photoinduced properties, evidence for sitting-atop structure. Chem Commun. 2005(2):224–226.

  40. Liu YQ, Ye MF, Ge QY, Qu XJ, Guo QS, Hu XY, Sun QJ. Ratiometric quantum dot-ligand system made by phase transfer for visual detection of double-stranded DNA and single-nucleotide polymorphism. Anal Chem. 2016;88:1768–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of China, grant number 81860317; Natural Science Foundation of Jiangsu Province, grant number BK20210630; and Science and Technology Department of Guizhou Province, grant number 20192821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqian Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2993 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hu, X., Liang, F. et al. A FRET sensor based on quantum dots–porphyrin assembly for Fe(III) detection with ultra-sensitivity and accuracy. Anal Bioanal Chem 414, 7741–7751 (2022). https://doi.org/10.1007/s00216-022-04305-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04305-y

Keywords

Navigation