Skip to main content
Log in

Enzyme-free colorimetric detection of biothiols based on the photoinduced oxidation of 3,3′,5,5′-tetramethylbenzidine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Realizing the rapid and on-site detection of biothiols in complex biological and food samples using simple assays and devices remains a major challenge. In this study, biothiols containing sulfhydryl groups were found to be able to inhibit the photo-triggered oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB). Based on the discovery, using the commercially available and low-cost TMB as the chromogenic substrate, an enzyme-free colorimetric approach was developed for the rapid determination of biothiols. The method does not involve the introduction of any natural enzymes, nanoenzymes, and external oxidants. The mechanisms of the photoinduced oxidation of TMB and the detection of biothiols were proposed. Furthermore, a smartphone-based portable device integrated with test strips was constructed by the 3D printing technique. This device can simultaneously meet the requirements of the photocatalytic oxidation reaction of TMB and the detection of biothiols. The entire process only takes less than 5 min. The successful detection of cysteine in urine and milk samples demonstrates the great potential of the device in the on-site assays.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matuz-Mares D, Riveros-Rosas H, Vilchis-Landeros MM, Vázquez-Meza H. Glutathione participation in the prevention of cardiovascular diseases. Antioxidants. 2021;10(8):1220. https://doi.org/10.3390/antiox10081220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rehman T, Shabbir MA, Inam-Ur-Raheem M, Manzoor MF, Ahmad N, Liu ZW, Ahmad MH, Siddeeg A, Abid M, Aadil RM. Cysteine and homocysteine as biomarker of various diseases. Food Sci Nutr. 2020;8(9):4696–707. https://doi.org/10.1002/fsn3.1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozben S, Kucuksayan E, Koseoglu M, Erel O, Neselioglu S, Ozben T. Plasma thiol/disulphide homeostasis changes in patients with relapsing-remitting multiple sclerosis. Int J Clin Pract. 2021;75(7):e14241. https://doi.org/10.1111/ijcp.14241.

    Article  CAS  PubMed  Google Scholar 

  4. Kaur N, Chopra S, Singh G, Raj P, Bhasin A, Sahoo SK, Kuwar A, Singh N. Chemosensors for biogenic amines and biothiols. J Mater Chem B. 2018;6(30):4872–902. https://doi.org/10.1039/C8TB00732B.

    Article  CAS  PubMed  Google Scholar 

  5. Luy J, Ameline D, Thobie-Gautier C, Boujtita M, Lebègue E. Detection of bacterial rhamnolipid toxin by redox liposome single impact electrochemistry. Angew Chem Int Ed. 2022;61(6):e202111416. https://doi.org/10.1002/anie.202111416.

    Article  CAS  Google Scholar 

  6. Wang HB, Chen Y, Li Y, Liu YM. A sensitive fluorescence sensor for glutathione detection based on MnO2 nanosheets-copper nanoclusters composites. RSC Adv. 2016;6(83):79526–32. https://doi.org/10.1039/c6ra17850b.

    Article  CAS  Google Scholar 

  7. Wang HB, Mao AL, Li YH, Gan T, Liu YM. A turn-on fluorescence strategy for biothiols determination by blocking Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. Luminescence. 2020;35(8):1296–303. https://doi.org/10.1002/bio.3891.

    Article  CAS  PubMed  Google Scholar 

  8. Wang HB, Mao AL, Gan T, Liu YM. A turn-on fluorescence strategy for cellular glutathione determination based on the aggregation-induced emission enhancement of self-assembled copper nanoclusters. Analyst. 2020;145(21):7009–17. https://doi.org/10.1039/d0an01247e.

    Article  CAS  PubMed  Google Scholar 

  9. Lee TH, Lee CH, Alia NA, Liew RK, Hamdan N, Wong SL, Ong PY. Amino acid determination by HPLC combined with multivariate approach for geographical classification of Malaysian edible bird’s nest. J Food Compos Anal. 2022;107:104399. https://doi.org/10.1016/j.jfca.2022.104399.

    Article  CAS  Google Scholar 

  10. Chang CW, Tseng WL. Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma. Anal Chem. 2010;82(7):2696–702. https://doi.org/10.1021/ac902342c.

    Article  CAS  PubMed  Google Scholar 

  11. Li F, Liu Y, Zhuang M, Zhang H, Liu X, Cui H. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu2+ complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion. ACS Appl Mater Interfaces. 2014;6(20):18104–11. https://doi.org/10.1021/am504985w.

    Article  CAS  PubMed  Google Scholar 

  12. Fernandes GM, Silva WR, Barreto DN, Lamarca RS, Gomes PCFL, Petruci JFD, Batista AD. Novel approaches for colorimetric measurements in analytical chemistry – a review. Anal Chim Acta. 2020;1135:187–203. https://doi.org/10.1016/j.aca.2020.07.030.

    Article  CAS  PubMed  Google Scholar 

  13. Kang B, Tang H, Gao M, Sun T, Zhao Z, Song S. Fluorescent hydrogel producing ZnO for colorimetric detection of glutathione and cysteine. Adv Mater Interfaces. 2021;8(20):2100765. https://doi.org/10.1002/admi.202100765.

    Article  CAS  Google Scholar 

  14. Lu W, Chen J, Kong L, Zhu F, Feng Z, Zhan J. Oxygen vacancies modulation Mn3O4 nanozyme with enhanced oxidase-mimicking performance for L-cysteine detection. Sensor Actuator B Chem. 2021;333:129560. https://doi.org/10.1016/j.snb.2021.129560.

    Article  CAS  Google Scholar 

  15. Chen Y, Chen T, Wu X, Yang G. CuMnO2 nanoflakes as pH-switchable catalysts with multiple enzyme-like activities for cysteine detection. Sensor Actuator B Chem. 2019;279:374–84. https://doi.org/10.1016/j.snb.2018.09.120.

    Article  CAS  Google Scholar 

  16. Xian Z, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y. Nanozyme based on CoFe2O4 modified with MoS2 for colorimetric determination of cysteine and glutathione. Microchim Acta. 2021;188(3):65. https://doi.org/10.1007/s00604-021-04702-7.

    Article  CAS  Google Scholar 

  17. Duan W, Qiu Z, Cao S, Guo Q, Huang J, Xing J, Lu X, Zeng J. Pd–Fe3O4 Janus nanozyme with rational design for ultrasensitive colorimetric detection of biothiols. Biosens Bioelectron. 2022;196:113724. https://doi.org/10.1016/j.bios.2021.113724.

    Article  CAS  PubMed  Google Scholar 

  18. Su M, Chen H, Zhang H, Wang Z. Controllable bisubstrate multi-colorimetric assay based on peroxidase-like nanozyme and complementary colorharmonic principle for semi-quantitative detection of H2O2 with the naked eye. Microchim Acta. 2022;189(2):81. https://doi.org/10.1007/s00604-022-05169-w.

    Article  CAS  Google Scholar 

  19. Bos ES, van der Doelen AA, van Rooy N, Schuurs AH. 3,3′,5,5′-Tetramethylbenzidine as an Ames test negative chromogen for horse-radish peroxidase in enzyme-immunoassay. J Immunoassay Immunochem. 1981;2(3–4):187–204. https://doi.org/10.1080/15321818108056977.

    Article  CAS  Google Scholar 

  20. Ames BN, Kammen HO, Yamasaki E. Hair dyes are mutagenic: identification of a variety of mutagenic ingredients. Proc Natl Acad Sci U S A. 1975;72(6):2423–7. https://doi.org/10.1073/pnas.72.6.2423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Voogd CE, Van der Stel JJ, Jacobs JJ. On the mutagenic action of some enzyme immunoassay substrates. J Immunol Methods. 1980;36(1):55–61. https://doi.org/10.1016/0022-1759(80)90093-9.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Li X, Lang Y, Wu P. Low-cost naked-eye UVB and UVC dosimetry based on 3,3′,5,5′-tetramethylbenzidine. Anal Chem. 2022;94(10):4373–9. https://doi.org/10.1021/acs.analchem.1c05190.

    Article  CAS  PubMed  Google Scholar 

  23. Bally RW, Gribnau TC. Some aspects of the chromogen 3,3′,5,5′-tetramethylbenzidine as hydrogen donor in a horseradish peroxidase assay. Clin Chem Lab Med. 1989;27(10):791–6. https://doi.org/10.1515/cclm.1989.27.10.791.

    Article  CAS  Google Scholar 

  24. Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;54(5):659. https://doi.org/10.1111/j.1751-1097.1991.tb02071.x.

    Article  CAS  PubMed  Google Scholar 

  25. Wu S, Zhou R, Chen H, Zhang J, Wu P. Highly efficient oxygen photosensitization of carbon dots: the role of nitrogen doping. Nanoscale. 2020;12(9):5543–53. https://doi.org/10.1039/C9NR10986B.

    Article  CAS  PubMed  Google Scholar 

  26. Duan D, Fang X, Li K. A peroxidase-like nanoenzyme based on strontium(II)-ion-exchanged Prussian blue analogue derivative SrCoO3/Co3O4 nanospheres and carbon quantum dots for the colorimetric detection of tigecycline in river water. Talanta. 2022;240:123112. https://doi.org/10.1016/j.talanta.2021.123112.

    Article  CAS  PubMed  Google Scholar 

  27. Cao L, Yang C, Zhang B, Lv K, Li M, Deng K. Synergistic photocatalytic performance of cobalt tetra(2-hydroxymethyl-1,4-dithiin)porphyrazine loaded on zinc oxide nanoparticles. J Hazard Mater. 2018;359:388–95. https://doi.org/10.1016/j.jhazmat.2018.07.074.

    Article  CAS  PubMed  Google Scholar 

  28. Yuan C, Qin X, Xu Y, Li X, Chen Y, Shi R, Wang Y. Carbon quantum dots originated from chicken blood as peroxidase mimics for colorimetric detection of biothiols. J Photochem Photobiol A Chem. 2020;396:112529. https://doi.org/10.1016/j.jphotochem.2020.112529.

    Article  CAS  Google Scholar 

  29. Du J, Wang J, Huang W, Deng Y, He Y. Visible light-activatable oxidase mimic of 9-mesityl-10-methylacridinium ion for colorimetric detection of biothiols and logic operations. Anal Chem. 2018;90(16):9959–65. https://doi.org/10.1021/acs.analchem.8b02197.

    Article  CAS  PubMed  Google Scholar 

  30. Lin M, Guo Y, Liang Z, Zhao X, Chen J, Wang Y. Simple and fast determination of biothiols using Fe3+-3,3′,5,5′-tetramethylbenzidine as a colorimetric probe. Microchem J. 2019;147:319–23. https://doi.org/10.1016/j.microc.2019.03.049.

    Article  CAS  Google Scholar 

  31. Mackay AS, Payne RJ, Malins LR. Electrochemistry for the chemoselective modification of peptides and proteins. J Am Chem Soc. 2022;144(1):23–41. https://doi.org/10.1021/jacs.1c11185.

    Article  CAS  PubMed  Google Scholar 

  32. Simic MG, Jovanovic SV. Antioxidation mechanisms of uric acid. J Am Chem Soc. 1989;111(15):5778–82. https://doi.org/10.1021/ja00197a042.

    Article  CAS  Google Scholar 

  33. Jocelyn PC. The standard redox potential of cysteine-cystine from the thiol-disulphide exchange reaction with glutathione and lipoic acid. Eur J Biochem. 1967;2(3):327–31. https://doi.org/10.1111/j.1432-1033.1967.tb00142.x.

    Article  CAS  PubMed  Google Scholar 

  34. Klotz LO, Kroncke KD, Sies H. Singlet oxygen-induced signaling effects in mammalian cells. Photochem Photobiol Sci. 2003;2(2):88–94. https://doi.org/10.1039/b210750c.

    Article  CAS  PubMed  Google Scholar 

  35. Seiwert B, Karst U. Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides. Anal Chem. 2007;79(18):7131–8. https://doi.org/10.1021/ac071016b.

    Article  CAS  PubMed  Google Scholar 

  36. Niero G, De Marchi M, Masi A, Penasa M, Cassandro M. Short communication: characterization of soluble thiols in bovine milk. J Dairy Sci. 2015;98(9):6014–7. https://doi.org/10.3168/jds.2015-9740.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21675056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jia.

Ethics declarations

Consent to participate

All individuals received a detailed description of the study and provided written informed consent to participate in the study before providing their urine samples. All of the experiments in this study were approved by the institutional ethics committee of South China Normal University.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 823 KB)

Supplementary file2 (MP4 17749 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Yu, Z., Fu, L. et al. Enzyme-free colorimetric detection of biothiols based on the photoinduced oxidation of 3,3′,5,5′-tetramethylbenzidine. Anal Bioanal Chem 414, 7731–7740 (2022). https://doi.org/10.1007/s00216-022-04304-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04304-z

Keywords

Navigation