Skip to main content
Log in

Coumarin 6H-fused fluorescent probe for highly sensitive detection of coralyne using oligonucleotide-modified silver nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, a novel, rapid, and sensitive fluorescence sensing platform was developed for the detection of coralyne (COR) by the conjugation of coumarin 6H (C6H) fluorescent dye with oligonucleotide-modified silver nanoparticles [(dT)32-AgNPs]. In the presence of COR, a remarkable and rapid decrease in the fluorescence signal of the probe with a quenching efficiency of around 62% was observed. The quenching response of the system towards COR was possibly due to the displacement of thymidine-rich deoxyoligonucleotides by COR on the surface of AgNPs. The complementary experiments with an adenine-rich single strand as well as with two different secondary structures (i.e., duplex and triplex) revealed a favorable sequence specificity of the sensing platform. The influence of key parameters including the incubation time and temperature was evaluated and optimized to achieve the highest performance. The linear range of 10–183 nM with a correlation coefficient of R = 0.9982 and a limit of detection of 5.24 nM were obtained under the optimized conditions. The selectivity of the proposed probe towards COR was revealed by the evaluation of its response to other small molecules that have molecular structures similar to COR. Finally, the successful applicability of the system was shown with the obtained average recoveries in the range of 87.28–104.52% in human urine samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1.

Similar content being viewed by others

Abbreviations

COR:

Coralyne

HPLC-MS:

High performance liquid chromatography-mass spectrometry

SERS:

Surface-enhanced Raman spectroscopy

AgNPs:

Silver nanoparticles

dsDNA:

Double-stranded DNA

LOD:

Limit of detection

Cit-AgNPs:

Citrate-stabilized silver nanoparticles

C-6H:

Coumarin 6H

FRET:

Fluorescence resonance energy transfer

NET:

Netropsin

ELP:

Ellipticine

DOX:

Doxorubicin

ETBR:

Ethidium bromide

OXP:

Oxaliplatin

HOE:

Hoechst 33258

DMSO:

Dimethyl sulfoxide

Aza3:

Azacyanine 3

Aza4:

Azacyanine 4

Aza5:

Azacyanine 5

HRTEM:

High-resolution transmission electron microscopy

DLS:

Dynamic light scattering

ZP:

Zeta-potential

FTIR:

Fourier transform infrared spectroscopy

ATR:

Attenuated total reflection

FL:

Fluorescence

SD:

Standard deviation

RT:

Room temperature

References

  1. Khan AY, Hossain M, Suresh KG. Investigations on the interaction of the phototoxic alkaloid coralyne with serum albumins. Chemosphere. 2012;87:775–81. https://doi.org/10.1016/j.Chemosphere.2011.12.079.

    Article  CAS  PubMed  Google Scholar 

  2. Jash C, Kumar GS. Binding of alkaloids berberine, palmatine and coralyne to lysozyme: a combined structural and thermodynamic study. RSC Adv. 2014;4:12514–25. https://doi.org/10.1039/c3ra46053c.

    Article  CAS  Google Scholar 

  3. Lee CY, Lin SW, Wu YH, Hsieh YZ. Combining DNA-stabilized silver nanocluster synthesis with exonuclease III amplification allows label-free detection of coralyne. Anal Chim Acta. 2018;1042:86–92. https://doi.org/10.1016/j.aca.2018.08.030.

    Article  CAS  PubMed  Google Scholar 

  4. Kumari S, Badana AK, Mohan GM, Naik GS, Malla R. Synergistic effects of coralyne and paclitaxel on cell migration and proliferation of breast cancer cells lines. Biomed Pharmacother. 2017;91:436–45.

    Article  CAS  PubMed  Google Scholar 

  5. Chen M, Ma C, Zhao H, Wang K. Label-free and sensitive detection of coralyne and heparin based on target-induced G-quadruplex formation. Anal Methods. 2019;11:1331–7. https://doi.org/10.1039/c9ay00175a.

    Article  CAS  Google Scholar 

  6. Gatto B, Sanders MM, Yu C, Wu HY, Makhey D, LaVoie EJ, Liu LF. Identification of topoisomerase I as the cytotoxic target of the protoberberine alkaloid coralyne. Cancer Res. 1996;56:2795–800.

    CAS  PubMed  Google Scholar 

  7. Polak M, Hud NV. Complete disproportionation of duplex poly (dT)· poly (dA) into triplex poly (dT)· poly (dA)· poly (dT) and poly (dA) by coralyne. Nucleic Acids Res. 2002;30:983–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhadra K, Kumar GS. Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA: a comparative spectroscopic and calorimetric study. Biochim Biophys Acta Gen Subj. 2011;1810:485–96.

    Article  CAS  Google Scholar 

  9. Joung IS, Persil Çetinkol Ö, Hud NV, Cheatham TE. Molecular dynamics simulations and coupled nucleotide substitution experiments indicate the nature of A·A base pairing and a putative structure of the coralyne-induced homo-adenine duplex. Nucleic Acids Res. 2009;37:7715–27. https://doi.org/10.1093/nar/gkp730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Persil Ö, Santai CT, Jain SS, Hud NV. Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding. J Am Chem Soc. 2004;126:8644–5.

    Article  CAS  PubMed  Google Scholar 

  11. Ren J, Chaires JB. Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry. 1999;38:16067–75. https://doi.org/10.1021/bi992070s.

    Article  CAS  PubMed  Google Scholar 

  12. Xing F, Song G, Ren J, Chaires JB, Qu X. Molecular recognition of nucleic acids: coralyne binds strongly to poly(A). FEBS Lett. 2005;579:5035–9. https://doi.org/10.1016/j.febslet.2005.07.091.

    Article  CAS  PubMed  Google Scholar 

  13. Hou T, Wang X, Liu X, Liu S, Du Z, Li F. A label-free and colorimetric turn-on assay for coralyne based on coralyne-induced formation of peroxidase-mimicking split DNAzyme. Analyst. 2013;138:4728–31.

    Article  CAS  PubMed  Google Scholar 

  14. Patro BS, Maity B, Chattopadhyay S. Topoisomerase inhibitor coralyne photosensitizes DNA, leading to elicitation of Chk2-dependent S-phase checkpoint and p53-independent apoptosis in cancer cells. Antioxid Redox Signal. 2010;12:945–60.

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Yu J, Zhou X, Miao P. Exonuclease and nicking endonuclease-assisted amplified electrochemical detection of coralyne. ChemElectroChem. 2017;4:1828–31. https://doi.org/10.1002/celc.201700400.

    Article  CAS  Google Scholar 

  16. Wang Y, Wang J, Yang F, Yang X. Probing biomolecular interactions with dual polarization interferometry: real-time and label-free coralyne detection by use of homoadenine DNA oligonucleotide. Anal Chem. 2012;84:924–30. https://doi.org/10.1021/ac2019443.

    Article  CAS  PubMed  Google Scholar 

  17. Lu Y, Huang Q. Label-free selective detection of coralyne due to aptamer-coralyne interaction using DNA modified SiO2@Au core-shell nanoparticles as an effective SERS substrate. Anal Methods. 2013;5:3927–32. https://doi.org/10.1039/c3ay40099a.

    Article  CAS  Google Scholar 

  18. Xu N, Yang H, Cui M, Wan C, Liu S. High-performance liquid chromatography–electrospray ionization-mass spectrometry ligand fishing assay: a method for screening triplex DNA binders from natural plant extracts. Anal Chem. 2012;84:2562–8.

    Article  CAS  PubMed  Google Scholar 

  19. Mateos E, Cebolla VL, Membrado L, Vela J, Gálvez EM, Matt M, Cossío FP. Coralyne cation, a fluorescent probe for general detection in planar chromatography. J Chromatogr A. 2007;1146:251–7.

    Article  CAS  PubMed  Google Scholar 

  20. Lin Y-H, Tseng W-L. Fluorescence detection of coralyne and polyadenylation reaction using an oligonucleotide-based fluorogenic probe. ChemComm. 2011;47:11134–6.

    CAS  Google Scholar 

  21. Wang H-B, Li Y-H, Huang K-J, Liu X-S, Yang Y-E, Liu Y-M. A label-free and sensitive fluorescence strategy for screening ligands binding to poly (dA) based on exonuclease I-assisted background noise reduction. Anal Methods. 2013;5:4852–8.

    Article  CAS  Google Scholar 

  22. Zhu X, Chen M, Ma C. Sensitive detection of coralyne and heparin using a singly labeled fluorescent oligonucleotide probe. ChemistrySelect. 2019;4:5686–90.

    Article  CAS  Google Scholar 

  23. Lin J-H, Tseng W-L. Design of two and three input molecular logic gates using non-Watson–Crick base pairing-based molecular beacons. Analyst. 2014;139:1436–41.

    Article  CAS  PubMed  Google Scholar 

  24. Tao Y, Lin Y, Ren J, Qu X. Self-assembled, functionalized graphene and DNA as a universal platform for colorimetric assays. Biomaterials. 2013;34:4810–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lv Z, Wei H, Li B, Wang E. Colorimetric recognition of the coralyne–poly (dA) interaction using unmodified gold nanoparticle probes, and further detection of coralyne based upon this recognition system. Analyst. 2009;134:1647–51.

    Article  CAS  PubMed  Google Scholar 

  26. Oh J-H, Han S-H, Park H-G, Lee J-S. Room-temperature colorimetric detection of coralyne using DNA-functionalized nanoparticle probes. Bull Korean Chem Soc. 2012;33:329–32.

    Article  CAS  Google Scholar 

  27. Zhang P, Wang Y, Leng F, Huang CZ. Highly selective and sensitive detection of coralyne based on the binding chemistry of aptamer and graphene oxide. Talanta. 2013;112:117–22.

    Article  CAS  PubMed  Google Scholar 

  28. Xu X, Wang J, Yang F, Jiao K, Yang X. Label-free colorimetric detection of small molecules utilizing DNA oligonucleotides and silver nanoparticles. Small. 2009;5:2669–72.

    Article  CAS  PubMed  Google Scholar 

  29. Ma C, Chen M, He H, Chen L. Detection of coralyne and heparin by polymerase extension reaction using SYBR Green I. Mol Cell Probes. 2019;46: 101423.

    Article  CAS  PubMed  Google Scholar 

  30. Huang H, Shi S, Zheng X, Yao T. Sensitive detection for coralyne and mercury ions based on homo-A/T DNA by exonuclease signal amplification. Biosens Bioelectron. 2015;71:439–44.

    Article  CAS  PubMed  Google Scholar 

  31. Usta HM, Forough M, Çetinkol ÖP. A DNA-free colorimetric probe based on citrate-capped silver nanoparticles for sensitive and rapid detection of coralyne. Sens Actuators B: Chem. 2019;298: 126823.

    Article  CAS  Google Scholar 

  32. Guo Y, Lv M, Ren J, Wang E. Regulating catalytic activity of DNA-templated silver nanoclusters based on their differential interactions with DNA structures and stimuli-responsive structural transition. Small. 2021;17:2006553.

    Article  CAS  Google Scholar 

  33. Yao G, Li J, Li Q, Chen X, Liu X, Wang F, Qu Z, Ge Z, Narayanan RP, Williams D. Programming nanoparticle valence bonds with single-stranded DNA encoders. Nat Mater. 2020;19:781–8.

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Cheng E, Huang W, Zhang T, Yang Z, Liu D, Tang Z. Improving the yield of mono-DNA-functionalized gold nanoparticles through dual steric hindrance. J Am Chem Soc. 2011;133:15284–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ranallo S, Porchetta A, Ricci F. DNA-based scaffolds for sensing applications. Anal Chem. 2018;91:44–59.

    Article  PubMed  Google Scholar 

  36. Song T, Tang L, Tan LH, Wang X, Satyavolu NSR, Xing H, Wang Z, Li J, Liang H, Lu Y. DNA-encoded tuning of geometric and plasmonic properties of nanoparticles growing from gold nanorod seeds. Angew Chem, Int Ed. 2015;54:8114–8.

    Article  CAS  Google Scholar 

  37. Hu S, Wang J, Liu J. Unified etching and protection of faceted silver nanostructures by DNA oligonucleotides. J Phys Chem C. 2019;123:12015–22.

    Article  CAS  Google Scholar 

  38. Zhu D, Chao J, Pei H, Zuo X, Huang Q, Wang L, Huang W, Fan C. Coordination-mediated programmable assembly of unmodified oligonucleotides on plasmonic silver nanoparticles. ACS Appl Mater Interfaces. 2015;7:11047–52.

    Article  CAS  PubMed  Google Scholar 

  39. Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C. Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA–gold nanoparticle nanoconjugates. J Am Chem Soc. 2012;134:11876–9.

    Article  CAS  PubMed  Google Scholar 

  40. Li D, Luo Z, An H, Yang E, Wu M, Huang Z, Duan Y. Poly-adenine regulated DNA density on AuNPs to construct efficient DNA walker for microRNA-21 detection. Talanta. 2020;217: 121056.

    Article  CAS  PubMed  Google Scholar 

  41. Wagner BD. The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules. 2009;14:210–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu X, Cole JM, Waddell PG, Lin T-C, Radia J, Zeidler A. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. J Phys Chem A. 2012;116:727–37.

    Article  CAS  PubMed  Google Scholar 

  43. Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Coumarin-based small-molecule fluorescent chemosensors. Chem Rev. 2019;119:10403–519.

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Li W, Zhi W, Huang Y, Han J, Wang Y, Ren Y, Ni L. A new coumarin schiff based fluorescent-colorimetric chemosensor for dual monitoring of Zn2+ and Fe3+ in different solutions: an application to bio-imaging. Sens Actuators B: Chem. 2018;260:243–54.

    Article  CAS  Google Scholar 

  45. Yang Y, Huo F, Zhang J, Xie Z, Chao J, Yin C, Tong H, Liu D, Jin S, Cheng F. A novel coumarin-based fluorescent probe for selective detection of bissulfite anions in water and sugar samples. Sens Actuators B: Chem. 2012;166:665–70.

    Article  Google Scholar 

  46. Kumari C, Sain D, Kumar A, Debnath S, Saha P, Dey S. Intracellular detection of hazardous Cd2+ through a fluorescence imaging technique by using a nontoxic coumarin based sensor. Dalton Trans. 2017;46:2524–31.

    Article  CAS  PubMed  Google Scholar 

  47. Roy N, Dutta A, Mondal P, Paul PC, Singh TS. Coumarin based fluorescent probe for colorimetric detection of Fe3+ and fluorescence turn on-off response of Zn2+ and Cu2+. J Fluoresc. 2017;27:1307–21.

    Article  CAS  PubMed  Google Scholar 

  48. Orrego-Hernández J, Nuñez-Dallos N, Portilla J. Recognition of Mg2+ by a new fluorescent “turn-on” chemosensor based on pyridyl-hydrazono-coumarin. Talanta. 2016;152:432–7.

    Article  PubMed  Google Scholar 

  49. Li H, Wen Z, Jin L, Kan Y, Yin B. A coumarin–Meldrum’s acid conjugate based chemodosimetric probe for cyanide. ChemComm. 2012;48:11659–61.

    CAS  Google Scholar 

  50. Wu Q, Liu Z, Cao D, Guan R, Wang K, Shan Y, Xu Y, Ma L. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions. Mater Chem Phys. 2015;161:43–8.

    Article  CAS  Google Scholar 

  51. Sun X, Wang Y, Zhang X, Zhang S, Zhang Z. A new coumarin based chromo-fluorogenic probe for selective recognition of cyanide ions in an aqueous medium. RSC Adv. 2015;5:96905–10.

    Article  CAS  Google Scholar 

  52. Alkış M, Pekyılmaz D, Yalçın E, Aydıner B, Dede Y, Seferoğlu Z. H-bond stabilization of a tautomeric coumarin-pyrazole-pyridine triad generates a PET driven, reversible and reusable fluorescent chemosensor for anion detection. Dyes Pigm. 2017;141:493–500.

    Article  Google Scholar 

  53. Biswas S, Gangopadhyay M, Barman S, Sarkar J, Singh NDP. Simple and efficient coumarin-based colorimetric and fluorescent chemosensor for F− detection: an ON1–OFF–ON2 fluorescent assay. Sens Actuators B: Chem. 2016;222:823–8.

    Article  CAS  Google Scholar 

  54. Wang Y, Wang X, Meng Q, Jia H, Zhang R, Zhu P, Song R, Feng H, Zhang Z. A gadolinium (III)-coumarin complex based MRI/fluorescence bimodal probe for the detection of fluoride ion in aqueous medium. Tetrahedron. 2017;73:5700–5.

    Article  CAS  Google Scholar 

  55. Chen S, Hou P, Wang J, Liu L, Zhang Q. A highly selective fluorescent probe based on coumarin for the imaging of N2H4 in living cells. Spectrochim Acta - A: Mol Biomol Spectrosc. 2017;173:170–4.

    Article  CAS  Google Scholar 

  56. Wang X, Hou J, Shen X, He Q, Hou C, Huo D. Fluorescence-based measurements for the determination of nitrite using a coumarin derivative sensor based on inner filter effect. Anal Methods. 2020;12:1107–14.

    Article  CAS  Google Scholar 

  57. Zhai Q, Yang S, Fang Y, Zhang H, Feng G. A new ratiometric fluorescent probe for the detection of thiophenols. RSC Adv. 2015;5:94216–21.

    Article  CAS  Google Scholar 

  58. Wijesooriya CS, Nieszala M, Stafford A, Zimmerman JR, Smith EA. Coumarin-based fluorescent probes for selectively targeting and imaging the endoplasmic reticulum in mammalian cells. Photochem Photobiol. 2019;95:556–62.

    Article  CAS  PubMed  Google Scholar 

  59. Huang KS, Haddadin MJ, Olmstead MM, Kurth MJ. Synthesis and reactions of some heterocyclic azacyanines. J Org Chem. 2001;66:1310–5. https://doi.org/10.1021/jo001484k.

    Article  CAS  PubMed  Google Scholar 

  60. Doğan K, Gülkaya A, Forough M, Persil ÇÖ. Novel fluorescent azacyanine compounds: improved synthesis and optical properties. ACS Omega. 2020;5:22874–82. https://doi.org/10.1021/acsomega.0c02202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ragazzon PA, Garbett NC, Chaires JB. Competition dialysis: a method for the study of structural selective nucleic acid binding. Methods. 2007;42:173–82. https://doi.org/10.1016/j.ymeth.2006.09.010.

    Article  CAS  PubMed  Google Scholar 

  62. Zeman SM, Phillips DR, Crothers DM. Characterization of covalent adriamycin-DNA adducts. PNAS. 1998;95:11561–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Osadchii SA, Shubin VG, Kozlova LP, Varlamenko VS, Filipenko ML, Boyarskikh UA. Improvement of ways to obtain ethidium bromide and synthesis of ethidium ethyl sulfate, a new fluorescent dye for detection of nucleic acids. Russ J Appl Chem. 2011;84:1541.

    Article  CAS  Google Scholar 

  64. Guloglu S, Kirmaci FN, Cetinkol OP, Forough M, Gulkaya A. Azacyanines as novel topoisomerase II alpha inhibitors. Lett Drug Des Discov. 2020;17:666–971.

    Article  CAS  Google Scholar 

  65. Degtyareva NN, Wallace BD, Bryant AR, Loo KM, Petty JT. Hydration changes accompanying the binding of minor groove ligands with DNA. Biophys J. 2007;92:959–65.

    Article  CAS  PubMed  Google Scholar 

  66. Graves DE, Krugh TR. Single-cell partition analysis—a direct fluorescence technique for examining ligand-macromolecule interactions. Anal Biochem. 1983;134:73–81.

    Article  CAS  PubMed  Google Scholar 

  67. Soori H, Rabbani-Chadegani A, Davoodi J. Exploring binding affinity of oxaliplatin and carboplatin, to nucleoprotein structure of chromatin: spectroscopic study and histone proteins as a target. Eur J Med Chem. 2015;89:844–50.

    Article  CAS  PubMed  Google Scholar 

  68. Bailly C, Colson P, Hénichart JP, Houssier C. The different binding modes of hoechst 33258 to DNA studied by electirc linear dichroism. Nucleic Acids Res. 1993;21:3705–9. https://doi.org/10.1093/nar/21.16.3705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Willis B, Arya DP. Triple recognition of B-DNA by a neomycin—hoechst 33258—pyrene conjugate. Biochemistry. 2010;49:452–69.

    Article  CAS  PubMed  Google Scholar 

  70. Flores CY, Diaz C, Rubert A, Benítez GA, Moreno MS, de Mele MAFL, Salvarezza RC, Schilardi PL, Vericat C. Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. J Colloid Interface Sci. 2010;350:402–8.

    Article  CAS  PubMed  Google Scholar 

  71. Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst. 2014;139:4855–61.

    Article  CAS  PubMed  Google Scholar 

  72. Jung Y, Jung J, Huh Y, Kim D. Benzo[g]coumarin-based fluorescent probes for bioimaging applications. J Anal Methods Chem. 2018;2018:5249765. https://doi.org/10.1155/2018/5249765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koppal VV, Patil PG, Melavanki RM, Kusanur RA, Afi UO, Patil NR. Exploring the influence of silver nanoparticles on the mechanism of fluorescence quenching of coumarin dye using FRET. J Mol Liq. 2019;292: 111419. https://doi.org/10.1016/j.molliq.2019.111419.

    Article  CAS  Google Scholar 

  74. Sasikumar T, Ilanchelian M. Colorimetric and visual detection of cyanide ions based on the morphological transformation of gold nanobipyramids into gold nanoparticles. New J Chem. 2020;44:4713–8.

    Article  CAS  Google Scholar 

  75. Storhoff JJ, Elghanian R, Mirkin CA, Letsinger RL. Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir. 2002;18:6666–70.

    Article  CAS  Google Scholar 

  76. Jain SS, Polak M, Hud NV. Controlling nucleic acid secondary structure by intercalation: effects of DNA strand length on coralyne-driven duplex disproportionation. Nucleic Acids Res. 2003;31:4608–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Raghavendra UP, Thipperudrappa J, Basanagouda M, Melavanki RM. Influence of silver nanoparticles on spectroscopic properties of biologically active iodinated 4-aryloxymethyl coumarin dyes. J Lumin. 2016;172:139–46.

    Article  CAS  Google Scholar 

  78. Sabatini CA, Pereira RV, Gehlen MH. Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles. J Fluoresc. 2007;17:377–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely express their great indebtedness to Prof. İrem Erel Göktepe and her research group members, especially Gökçe Tidim, for their help and technical support with DLS and ZP measurements. Authors gratefully acknowledge Middle East Technical University Central Laboratory, especially TEM laboratory technicians. Authors also would like to thank the Department of Chemistry, Faculty of Arts and Sciences, and Medical, Health and Guidance Center, Middle East Technical University for providing the infrastructure and their support.

Author information

Authors and Affiliations

Authors

Contributions

HMU: methodology, investigation, formal analysis, data curation, writing—original draft. MF: conceptualization, methodology, investigation, formal analysis, data curation, writing—original draft, writing—review and editing. ÖPÇ: project administration, methodology, investigation, visualization, data curation, writing — review and editing.

Corresponding author

Correspondence to Özgül Persil Çetinkol.

Ethics declarations

Ethics approval and consent to participate

Urine samples in this study were obtained from three healthy adult volunteers. This study was approved by METU Medical, Health and Guidance Center, and experiments with real samples were performed in accordance with ethical standards. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2300 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usta, H.M., Forough, M. & Persil Çetinkol, Ö. Coumarin 6H-fused fluorescent probe for highly sensitive detection of coralyne using oligonucleotide-modified silver nanoparticles. Anal Bioanal Chem 414, 7299–7313 (2022). https://doi.org/10.1007/s00216-022-04282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04282-2

Keywords

Navigation