Skip to main content
Log in

Facile bimetallic co-amplified electrochemical sensor for folic acid sensing based on CoNPs and CuNPs

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Folic acid (FA) is essential for human health, particularly for pregnant women and infants. In this work, a glassy carbon electrode (GCE) was modified by a bimetallic layer of Cu/Co nanoparticles (CuNPs/CoNPs) as a synergistic amplification element by simple step-by-step electrodeposition, and was used for sensitive detection of FA. The proposed CuNPs/CoNPs/GCE sensor was characterized by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). Then, under optimal conditions, a linear relationship was obtained in the wide range of 110.00–1750.00 μM for the detection of FA with a limit of detection (LOD) of 34.79 μM (S/N = 3). The sensitivity was calculated as 0.096 μA μM−1 cm−2. Some interfering compounds including glucose (Glc), biotin, dopamine (DA), and glutamic acid (Glu) showed little effect on the detection of FA by amperometry (i-t). Finally, the average recovery obtained was in a range of 91.77–110.06%, with a relative standard deviation (RSD) less than 8.00% in FA tablets, indicating that the proposed sensor can accurately and effectively detect the FA content in FA tablets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Di Tinno A, Cancelliere R, Micheli L. Determination of folic acid using biosensors-a short review of recent progress. Sensors. 2021;21(10):3360. https://doi.org/10.3390/s21103360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bulloch RE, Wall CR, McCowan LME, Taylor RS, Roberts CT, Thompson JMD. The effect of interactions between folic acid supplementation and one carbon metabolism gene variants on small-for-gestational-age births in the screening for pregnancy endpoints (scope) cohort study. Nutrients. 2020;12(6):1677. https://doi.org/10.3390/nu12061677.

    Article  CAS  PubMed Central  Google Scholar 

  3. Jouanne M, Oddoux S, Noel A, Voisin-Chiret AS. Nutrient requirements during pregnancy and lactation. Nutrients. 2021;13(2):692. https://doi.org/10.3390/nu13020692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Svaton M, Kramarzova KS, Kanderova V, Mancikova A, Smisek P, Jesina P, et al. A homozygous deletion in the SLC19A1 gene as a cause of folate-dependent recurrent megaloblastic anemia. Blood. 2020;135(26):2427–31. https://doi.org/10.1182/blood.2019003178.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Spence JD, Wang X, Huo Y, Xu X, Qin X. Effect of vitamin B-12 levels on the association between folic acid treatment and ckd progression: A post hoc analysis of a folic acid interventional trial. Am J Kidney Dis. 2020;75(3):325–32. https://doi.org/10.1053/j.ajkd.2019.07.020.

    Article  CAS  PubMed  Google Scholar 

  6. Puga AM, Ruperto M, de Lourdes S-VM, Montero-Bravo A, Partearroyo T, Varela-Moreiras G. Effects of supplementation with folic acid and its combinations with other nutrients on cognitive impairment and alzheimer's disease: A narrative review. Nutrients. 2021;13(9):2966. https://doi.org/10.3390/nu13092966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng M, Yang L, Dong Z, Wang M, Sun Y, Liu H, et al. Folic acid deficiency enhanced microglial immune response via the notchl/nuclear factor kappa B p65 pathway in hippocampus following rat brain I/R injury and BV2 cells. J Cell Mol Med. 2019;23(7):4795–807. https://doi.org/10.1111/jcmm.14368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wiens D, DeSoto MCJBs. Is high folic acid intake a risk factor for autism?—a review. Brain Sci. 2017;7(11):149. https://doi.org/10.3390/brainsci7110149.

    Article  CAS  PubMed Central  Google Scholar 

  9. Kang L, Lin C, Ning F, Sun X, Zhang M, Zhang H, et al. Rapid determination of folic acid and riboflavin in urine by polypyrrole magnetic solid-phase extractant combined ultra-performance liquid chromatography. J Chromatogr A. 2021;1648:462192. https://doi.org/10.1016/j.chroma.2021.462192.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu T, Wang H, Zang L, Jin S, Guo S, Park E, et al. Flexible and reusable ag coated TiO2 nanotube arrays for highly sensitive sers detection of formaldehyde. Molecules. 2020;25(5):1199. https://doi.org/10.3390/molecules25051199.

    Article  CAS  PubMed Central  Google Scholar 

  11. Cao Y, Griffith B, Bhomkar P, Wishart DS, McDermott MTJA. Functionalized gold nanoparticle-enhanced competitive assay for sensitive small-molecule metabolite detection using surface plasmon resonance. Analyst. 2018;143(1):289–96. https://doi.org/10.1039/c7an01680h.

    Article  CAS  Google Scholar 

  12. Sharma A, Arya S. Economical and efficient electrochemical sensing of folic acid using a platinum electrode modified with hydrothermally synthesized Pd and Ag Co-doped SnO2 nanoparticles. J Electrochem Soc. 2019;166(13):B1107. https://doi.org/10.1149/2.0261913jes.

    Article  CAS  Google Scholar 

  13. Han G-C, Li H, Ferranco A, Zhan T, Cheng Y, Chen Z, et al. The construction of a simple sensor for the simultaneous detection of nitrite and thiosulfate by heme catalysis. RSC Adv. 2020;10(58):35007–16. https://doi.org/10.1039/D0RA06942F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Safaei M, Beitollahi H, Shishehbore MR. Amplified electrochemical sensor employing Fe3O4@SiO2/graphene nanocomposite for selective determination of folic acid. J Anal Chem. 2020;75(1):95–100. https://doi.org/10.1134/s1061934820010141.

    Article  CAS  Google Scholar 

  15. Zhan T, Feng X-Z, An Q-Q, Li S, Xue M, Chen Z, et al. Enzyme-free glucose sensors with efficient synergistic electro-catalysis based on a ferrocene derivative and two metal nanoparticles. RSC Adv. 2022;12(9):5072–9. https://doi.org/10.1039/D1RA09213H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. An Q-Q, Feng X-Z, Zhou Z-F, Zhan T, Lian S-F, Zhu J, et al. One step construction of an electrochemical sensor for melamine detection in milk towards an integrated portable system. Food Chem. 2022;383:132403. https://doi.org/10.1016/j.foodchem.2022.132403.

    Article  CAS  PubMed  Google Scholar 

  17. Dokur E, Gorduk O, Sahin Y. Differential pulse voltammetric determination of folic acid using a poly(cystine) modified pencil graphite electrode. Anal Lett. 2020;53(13):2060–78. https://doi.org/10.1080/00032719.2020.1728540.

    Article  CAS  Google Scholar 

  18. Zhan T, Feng X-Z, Cheng Y, Han G-C, Chen Z, Kraatz H-B. Synergistic electrochemical amplification of ferrocene carboxylic acid nanoflowers and cu nanoparticles for folic acid sensing. J Electrochem Soc. 2022;169(7):077510. https://doi.org/10.1149/1945-7111/ac8022.

  19. Batra B, Narwal V, Kalra V, Sharma M, Rana JS. Folic acid biosensors: A review. Process Biochem. 2020;92:343–54. https://doi.org/10.1016/j.procbio.2020.01.025.

    Article  CAS  Google Scholar 

  20. Khan SI, Tadi KK, Chillawar RR, Motghare RV. Interfacing electrochemically reduced graphene oxide with poly(erichrome black T) for simultaneous determination of epinephrine, uric acid and folic acid. J Electrochem Soc. 2018;165(16):B804. https://doi.org/10.1149/2.0121816jes.

    Article  CAS  Google Scholar 

  21. Joshi A, Kim K-H. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens. 2020;153:112046. https://doi.org/10.1016/j.bios.2020.112046.

    Article  CAS  Google Scholar 

  22. Yuan M-M, Zou J, Huang Z-N, Peng D-M, Yu J-G. PtNPs-GNPs-MWCNTs-β-Cd nanocomposite modified glassy carbon electrode for sensitive electrochemical detection of folic acid. Anal Bioanal Chem. 2020;412(11):2551–64.

    Article  CAS  Google Scholar 

  23. Elumalai S, Mani V, Jeromiyas N, Ponnusamy VK, Yoshimura M. A composite film prepared from titanium carbide Ti3C2Tx (MXene) and gold nanoparticles for voltammetric determination of uric acid and folic acid. Microchim Acta. 2020;187(1):1–10. https://doi.org/10.1007/s00604-019-4018-0.

    Article  CAS  Google Scholar 

  24. Han G-C, Su X, Hou J, Ferranco A, Feng X-Z, Zeng R, et al. Disposable electrochemical sensors for hemoglobin detection based on ferrocenoyl cysteine conjugates modified electrode. Sens Actuators B: Chem. 2019;282:130–6. https://doi.org/10.1016/j.snb.2018.11.042.

    Article  CAS  Google Scholar 

  25. Liu J-G, Wan J-Z, Lin Q-M, Han G-C, Feng X-Z, Chen Z. Convenient heme nanorod modified electrode for quercetin sensing by two common electrochemical methods. Micromachines. 2021;12(12):1519. https://doi.org/10.3390/mi12121519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng X-Z, Li H, Ferranco A, Chen Z, Xue M, Han G-C, et al. A very simple method for detection of bisphenol a in environmental water by heme signal amplification. J Electrochem Soc. 2020;167(6). https://doi.org/10.1149/1945-7111/ab7e20.

  27. Yang Z, Gong F, Yu Z, Shi D, Liu S, Chen M. Highly sensitive folic acid colorimetric sensor enabled by free-standing molecularly imprinted photonic hydrogels. Polym Bull. 2022;79(3):1857–71. https://doi.org/10.1007/s00289-021-03584-2.

    Article  CAS  Google Scholar 

  28. Wang Q, Xiao X, Hu X, Huang L, Li T, Yang M. Molecularly imprinted electrochemical sensor for ascorbic acid determination based on mxene modified electrode. Mater Lett. 2021;285:129158. https://doi.org/10.1016/j.matlet.2020.129158.

    Article  CAS  Google Scholar 

  29. Garcia SM, Wong A, Khan S, Sotomayor MDPT. A simple, sensitive and efficient electrochemical platform based on carbon paste electrode modified with Fe3O4@MIP and graphene oxide for folic acid determination in different matrices. Talanta. 2021;229. https://doi.org/10.1016/j.talanta.2021.122258.

  30. Bettazzi F, Ingrosso C, Sfragano PS, Pifferi V, Falciola L, Curri ML, et al. Gold nanoparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae. Food Chem. 2021;344. https://doi.org/10.1016/j.foodchem.2020.128692.

  31. Wong A, Santos AM, Silva TA, Fatibello-Filho OJT. Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and pedot: Pss. Talanta. 2018;183:329–38. https://doi.org/10.1016/j.talanta.2018.02.066.

    Article  CAS  PubMed  Google Scholar 

  32. Tefera M, Tessema M, Admassie S, Ward M, Phelane L, Iwuoha EI, et al. Electrochemical application of cobalt nanoparticles-polypyrrole composite modified electrode for the determination of phoxim. Analytica chimica acta: X. 2021;9:100077. https://doi.org/10.1016/j.acax.2021.100077.

    Article  CAS  Google Scholar 

  33. Park C, Koo WT, Chong S, Shin H, Kim YH, Cho HJ, et al. Confinement of ultrasmall bimetallic nanoparticles in conductive metal-organic frameworks via site-specific nucleation. Adv Mater. 2021;33(38):2101216. https://doi.org/10.1002/adma.202170302.

    Article  CAS  Google Scholar 

  34. Park CE, Lee H, Senthil RA, Jeong GH, Choi MY. Bimetallic nickel-palladium nanoparticles with low Ni content and their enhanced ethanol oxidation performance: Using a pulsed laser as modification machinery. Fuel. 2022;321:124108. https://doi.org/10.1016/j.fuel.2022.124108.

    Article  CAS  Google Scholar 

  35. Liu Y, Yao S, Hu G, Ye Y, Wang H. In-situ electrochemical co-deposition of bimetallic CuCo nanoparticles on cubic mesoporous carbon for ultrasensitive electrochemical sensing of cyadox. Electrochim Acta. 2021;380:138128. https://doi.org/10.1016/j.electacta.2021.138128.

    Article  CAS  Google Scholar 

  36. Wang Q, Si H, Zhang L, Li L, Wang X, Wang SJACA. A fast and facile electrochemical method for the simultaneous detection of epinephrine, uric acid and folic acid based on ZrO2/ZnO nanocomposites as sensing material. Anal Chim Acta. 2020;1104:69–77. https://doi.org/10.1016/j.aca.2020.01.012.

    Article  CAS  PubMed  Google Scholar 

  37. Tajik S, Beitollahi H, Shahsavari S, Nejad FGJC. Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. Chemosphere. 2022;291:132736. https://doi.org/10.1016/j.chemosphere.2021.132736.

    Article  CAS  PubMed  Google Scholar 

  38. Roman G, Pappas AC, Kovala-Demertzi D, Prodromidis MI. Preparation of a 2-(4-fluorophenyl)indole-modified xerogel and its use for the fabrication of screen-printed electrodes for the electrocatalytic determination of sulfide. Anal Chim Acta. 2004;523(2):201–7. https://doi.org/10.1016/j.aca.2004.07.037.

    Article  CAS  Google Scholar 

  39. Cheng S, Tang D, Zhang Y, Xu L, Liu K, Huang K, et al. Specific and sensitive detection of tartrazine on the electrochemical interface of a molecularly imprinted polydopamine-coated PtCo nanoalloy on graphene oxide. Biosens. 2022;12(5):326. https://doi.org/10.3390/bios12050326.

  40. Cheng S, Liu H, Zhang H, Chu G, Guo Y, Sun XJS, et al. Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Sens Actuators B: Chem. 2020;304:127367. https://doi.org/10.1016/j.snb.2019.127367.

    Article  CAS  Google Scholar 

  41. Suresh L, Bondili J, Brahman PJMTC. Development of proof of concept for prostate cancer detection: An electrochemical immunosensor based on fullerene-C60 and copper nanoparticles composite film as diagnostic tool. Mater Today Chem. 2020;16:100257. https://doi.org/10.1016/j.mtchem.2020.100257.

    Article  CAS  Google Scholar 

  42. Zhang R, Fu K, Zou F, Bai H, Zhang G, Liang F, et al. Highly sensitive electrochemical sensor based on pt nanoparticles/carbon nanohorns for simultaneous determination of morphine and mdma in biological samples. Electrochim Acta. 2021;370:137803. https://doi.org/10.1016/j.electacta.2021.137803.

    Article  CAS  Google Scholar 

  43. Su L, Cheng Y, Shi J, Wang X, Xu P, Chen Y, et al. Electrochemical sensor with bimetallic Pt-Ag nanoparticle as catalyst for the measurement of dissolved formaldehyde. J Electrochem Soc. 2022;169(4):047507.

    Article  Google Scholar 

  44. Sun X, Wang N, Xie Y, Chu H, Wang Y, Wang YJT. In-situ anchoring bimetallic nanoparticles on covalent organic framework as an ultrasensitive electrochemical sensor for levodopa detection. Talanta. 2021;225:122072. https://doi.org/10.1016/j.talanta.2020.122072.

    Article  CAS  PubMed  Google Scholar 

  45. Ge S, Zhang Y, Zhang L, Liang L, Liu H, Yan M, et al. Ultrasensitive electrochemical cancer cells sensor based on trimetallic dendritic Au@PtPd nanoparticles for signal amplification on lab-on-paper device. Sens Actuators B: Chem. 2015;220:665–72. https://doi.org/10.1016/j.snb.2015.06.009.

    Article  CAS  Google Scholar 

  46. Cheng Y-Y, Zhan T, Feng X-Z, Han G-C. A synergistic effect of gold nanoparticles and melamine with signal amplification for C-reactive protein sensing. J Electroanal Chem. 2021;895:115417. https://doi.org/10.1016/j.jelechem.2021.115417.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the financial support from the National Natural Science Foundation of China (No.61661014, 81873913, 61861010, 61627807), the Natural Science Foundation of Guangxi Province (No. 2018GXNSFAA281198, 2018GXNSFBA281135), Guangxi One Thousand Young and Middle-aged College and University Backbone Teachers Cultivation Program and Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments. Funding from the Natural Science and Engineering Research Council of Canada and the University of Toronto are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Cheng Han, Zhencheng Chen or Heinz-Bernhard Kraatz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 7.83 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, ZF., Feng, XZ., Zhan, T. et al. Facile bimetallic co-amplified electrochemical sensor for folic acid sensing based on CoNPs and CuNPs. Anal Bioanal Chem 414, 6791–6800 (2022). https://doi.org/10.1007/s00216-022-04242-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04242-w

Keywords

Navigation