Skip to main content

Advertisement

Log in

Smart IM-MS and NMR study of natural diastereomers: the study case of the essential oil from Senecio transiens

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Unambiguous identification of the components of a natural mixture remains a challenging and meticulous issue. Usually, different analytical techniques and laborious separation protocols are employed; nevertheless, in some cases, delicate and equivocal problems are hardly addressed by traditional methods. In this context, an original methodology for the analysis of natural samples consisting of recent mass spectrometry methods based on ion mobility (MS-IM) is proposed. As an example, a polar fraction obtained by the essential oil prepared from Senecio transiens, an endemic plant harvested on the Corsica Island, was selected for this study to show how IM-MS-based methods easily provide very useful insights suggesting the presence of two diastereomers. To unambiguously confirm this hypothesis and verify reliability of the IM-MS results, the purified compounds were further analysed by means of nuclear magnetic resonance (NMR) methodologies, allowing the structural elucidation and the identification of two new natural compounds, diastereomers of 4-acetoxy-5,9-dimethyl-3-(2-methylpropenyl)-2-oxabicyclo[4.4.0] dec-9-ene, reported here for the first time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cseke LJ, Kirakosyan A, Kaufman PB, Warber S, Duke JA, Brielmann HL. Natural products from plants. 2nd ed. Boca Raton: CRC Press; 2006.

    Google Scholar 

  2. Başer KHC, Buchbauer G. Handbook of essential oils: science, technology, and applications. 3rd ed. Boca Raton: CRC Press; 2020.

    Book  Google Scholar 

  3. Edris AE. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res. 2007;21(4):308–23.

    Article  CAS  Google Scholar 

  4. Jeanmonod D, Schlussel A, Gamisans J. Asteraceae-II. In Compléments au Prodrome de la Flore Corse. Genève: Conservatoire et Jardin botaniques, 2004.

  5. Jeanmonod D, Gamisans J. Flora Corsica. Aix en Provence: Edisud, 2007.

  6. Johnson AR, Carlson EE. Collision-induced dissociation mass spectrometry: a powerful tool for natural product structure elucidation. Anal Chem. 2015;87(21):10668–78.

    Article  CAS  Google Scholar 

  7. Eiceman GA, Karpas Z, Hill HH Jr. Ion mobility spectrometry. 3rd ed. Boca Raton: CRC Press; 2013.

    Book  Google Scholar 

  8. Wilkins CL, Trimpin S. Ion mobility spectrometry-mass spectrometry: theory and applications. Boca Raton: CRC Press; 2010.

    Book  Google Scholar 

  9. Guo S, Zhang F, Wang H, Zhang M, Zhang Z, Zhang X, Guo Y. Behaviors of leucine and isoleucine in ion mobility-quadrupole time of flight mass spectrometry. Chin J Chem. 2015;33(12):1359–64.

    Article  CAS  Google Scholar 

  10. Awad H, El-Aneed A. Enantioselectivity of mass spectrometry: challenges and promises. Mass Spectrom Rev. 2013;32(6):466–83.

    Article  CAS  Google Scholar 

  11. Clowers BH, Dwivedi P, Steiner WE, Hill HH, Bendiak B. Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J Am Soc Mass Spectrom. 2005;16(5):660–9.

    Article  CAS  Google Scholar 

  12. Andreani S. Valorisation d’espèces envahissantes des genres Xanthium et Senecio: Caractérisation, variabilité chimique et activités des huiles essentielles. PhD Thesis. Université de CORSE - Pascal PAOLI, 2014.

  13. Berger S, Braun S. 200 and more NMR experiments: a practical course. Weinheim: Wiley-VCH; 2004.

    Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT GaussView 5.0. Wallingford, 2016.

  15. Tintaru A, Chendo C, Wang Q, Quelever G, Peng L, et al. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization—a mass spectrometry, ion mobility and molecular modeling study. Anal Chim Acta. 2014;808:163–74.

    Article  CAS  Google Scholar 

  16. Chendo C, Moreira G, Tintaru A, Prosocco P, Laurini E, Lefay C, et al. Anomerization of acrylated glucose during traveling wave ion mobility spectrometry. J Am Soc Mass Spectrom. 2015;26(9):1483–93.

    Article  CAS  Google Scholar 

  17. Case DA, Belfon K, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE, et al. AMBER 2020, University of California, San Francisco.

  18. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–74.

    Article  CAS  Google Scholar 

  19. Zanotto L, Heerdt G, Souza PCT, Araujo G, Skaf MS. High performance collision cross section calculation-HPCCS. J Comput Chem. 2018;39(21):1675–81.

    Article  CAS  Google Scholar 

  20. Gerhard U, Thomas S, Mortishire-Smith R. Accelerated metabolite identification by “Extraction-NMR.” J Pharm Biomed Anal. 2003;32(3):531–8.

    Article  CAS  Google Scholar 

  21. Wang Y, Vivekananda S, Zhang K. ESI-MS/MS for the differentiation of diastereomeric pyrimidine glycols in mononucleosides. Anal Chem. 2002;74(17):4505–12.

    Article  CAS  Google Scholar 

  22. Tintaru A, Benchabane Y, Boyer G, Humbel S, Charles L. Differentiation of heterocyclic regioisomers: a combined tandem mass spectrometry and computational study of N-acridin-4-ylbenzylamide and N-acridin-2-yl-benzylamide. Rapid Commun Mass Spectrom. 2008;22(5):687–93.

    Article  CAS  Google Scholar 

  23. Tintaru A, Labed V, Charles L. Structural characterisation of degradation products formed upon di-n-butyl phthalate radiolysis by high-performance liquid chromatography electrospray tandem mass spectrometry. Eur J Mass Spectrom. 2010;16(5):595–603.

    Article  CAS  Google Scholar 

  24. Günther H. NMR spectroscopy: basic principles, concepts and applications in chemistry. 3rd ed. Weinheim: Wiley-VCH Verlag GmbH; 2013.

    Google Scholar 

  25. Bubb WA. NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concepts Magn Resonan A. 2003;19A(1):1–19.

    Article  CAS  Google Scholar 

  26. Roslund MU, Tähtinen P, Niemitz M, Sjöholm R. Complete assignments of the 1H and 13C chemical shifts and JH, H coupling constants in NMR spectra of d-glucopyranose and all d-glucopyranosyl-d-glucopyranosides. Carbohydr Res. 2008;343(1):101–12.

    Article  CAS  Google Scholar 

  27. Kalinowsy HO, Berger S, Braun S. Carbon-13 NMR spectroscopy. Wiley; 1988.

Download references

Acknowledgements

AT acknowledge Spectropole (FSCM FR1739) for privileged access to the instrumental park. This article is based upon work from COST Action CA 17140 — “Cancer Nanomedicine from Bench to the Bedside” supported by COST (European Cooperation in Science and Technology). This work was supported by the computing facilities of the CRCMM, “Centre Régional de Compétences en Modélisation Moléculaire de Marseille.”

Funding

This research received funding from Aix-Marseille University annual funding research support; it was not supported by any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Aura Tintaru.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.53 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spano, M., Andreani, S., Naubron, JV. et al. Smart IM-MS and NMR study of natural diastereomers: the study case of the essential oil from Senecio transiens. Anal Bioanal Chem 414, 6695–6705 (2022). https://doi.org/10.1007/s00216-022-04232-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04232-y

Keywords

Navigation