Skip to main content
Log in

Ag nanozyme strengthened by folic acid: Superior peroxidase-mimicking activity and application for visual monitoring of dopamine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Dopamine (DA) is an important neurotransmitter; however, any excess or deficiency of DA will cause several diseases in humans. To monitor DA efficiently and conveniently, a Ag nanozyme strengthened by bioactive folic acid (FA@AgNPs) was developed by homogeneous redox assembly. After the microstructure and performance were characterized in detail, it was noted that the proposed FA@AgNPs possessed superior peroxidase-like activity due to the ultra-small Ag nanoparticles and multiple amino, hydroxyl, and aromatic rings in FA. FA@AgNPs accelerated the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) with a low Michaelis constant (Km) and high maximal reaction rate (Vmax). Importantly, the characteristic absorbance intensity of FA@AgNPs-TMB-H2O2 at 652 nm (A652) was exclusively deteriorated in the presence of trace DA, accompanied by a visual color change from blue to colorless. Under the optimized conditions (pH 4.0, 300 μL 1.5 mM TMB, 300 μL 1.0 M H2O2 and incubated for 30 min at room temperature), there expressed an excellent linear relationship between lgA0/A652 and cDA from 1.0 ×10−8 to 6.67×10−6 mol/L with a low limit detection of 7.1×10−10 mol/L (S/N=3). When applied for monitoring of DA in real fruit juice and pharmaceutical samples, the recovery was between 96.6% and 104.9%, with RSD less than 2.2%. The enhanced peroxidase-like activity of the FA@AgNP system and its selective recognition mechanism for DA are also proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang K, Zhuo ZH, Fan GR, Wang ZD, Chen SX, Xu LL, et al. Nano-ZnS decorated hierarchically porous carbon electrocatalyst with multiple enzyme-like activities as a nanozyme sensing platform for simultaneous detection of dopamine, uric acid, guanine, and adenine. Nanoscale. 2021;13(47):20078–90.

    Article  PubMed  Google Scholar 

  2. Liu C, Zhao YM, Xu D, Zheng XX, Huang Q. A green and facile approach to a graphene-based peroxidase-like nanozyme and its application in sensitive colorimetric detection of l-cysteine. Anal Bioanal Chem. 2021;413(15):4013–22.

    Article  CAS  PubMed  Google Scholar 

  3. Hu L, Nie L, Xu G, Shi H, Xu X, Zhang X, et al. Spectral properties of 4-(4-hydroxy-1- naphthylazo)benzene sulfonic acid and its application for colorimetric determination of trace Fe3+. RSC Adv. 2014;4:19370–4.

    Article  CAS  Google Scholar 

  4. He SB, Chen FQ, Xiu LF, Peng HP, Deng HH, Liu AL, Chen W, Hong GL. Highly sensitive colorimetric sensor for detection of iodine ions using carboxylated chitosan-coated palladium nanozyme. Anal Bioanal Chem. 2020;412(2):499–506.

    Article  CAS  PubMed  Google Scholar 

  5. Ashrafizadeh M, Mohammadinejad R, Kailasa SK, Ahmadi Z, Afshar EG, Pardakhty A. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: A review. Adv Colloid Interf Sci. 2020;278:102123.

    Article  CAS  Google Scholar 

  6. Wu L, Feng LY, Ren JS, Qu XG. Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens Bioelectron. 2012;34(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  7. Stewart AJ, Hendry J, Dennany L. Whole Blood Electrochemiluminescent Detection of Dopamine. Anal Chem. 2015;87(23):11847–53.

    Article  CAS  PubMed  Google Scholar 

  8. Lin CH, Hsiao CY, Hung CH, Lo YR, Lee CC, Su CJ, et al. Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. Chem Commun. 2008;44:5749–51.

    Article  CAS  Google Scholar 

  9. Suzuki Y. Design and synthesis of fluorescent reagents for selective detection of dopamine. Sensors Actuators B Chem. 2017;239:383–9.

    Article  CAS  Google Scholar 

  10. Liu JM, Wang XX, Cui ML, Lin LP, Jiang SL, Jiao L, et al. A promising non-aggregation colorimetric sensor of AuNRs-Ag+ for determination of dopamine. Sensors Actuators B Chem. 2013;176:97–102.

    Article  CAS  Google Scholar 

  11. Wang J, Hu Y, Zhou Q, Hu L, Fu W, Wang Y. Peroxidase-like activity of metal-organic framework [Cu (PDA)(DMF)] and its application for colorimetric detection of dopamine. ACS Appl Mater Interfaces. 2019;11:44466–73.

    Article  CAS  PubMed  Google Scholar 

  12. Rasheed PA, Lee JS. Recent advances in optical detection of dopamine using nanomaterials. Microchim Acta. 2017;184:1239–66.

    Article  CAS  Google Scholar 

  13. Gao Z, Li Y, Zhang Y, Cheng K, An P, Chen F, et al. Biomimetic Platinum Nanozyme Immobilized on 2D Metal-Organic Frameworks for Mitochondrion-Targeting and Oxygen Self-Supply Photodynamic Therapy. ACS Appl Mater Interfaces. 2020;12(2):1963–72.

    Article  CAS  PubMed  Google Scholar 

  14. Li SR, Zhang YH, Wang Q, Lin AQ, Wei H. Nanozyme-Enabled Analytical Chemistry. Anal Chem. 2022;94(1):312–23.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang DW, Ni DL, Rosenkrans ZT, Huang P, Yan XY, Cai WB. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 2019;48(14):3683–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao WL, Liu Y, Li D, Zhang Q, Zhong SW, Cheng HW, et al. Synergistically Enhanced Electrochemical Performance of Ni-rich Cathode Materials for Lithium-ion Batteries by K and Ti Comodification. J Phys Chem C. 2020;124:2346–56.

    Article  CAS  Google Scholar 

  17. Yan ZQ, Yuan H, Zhao Q, Xing L, Zheng XY, Wang WG, et al. Recent developments of nanoenzyme-based colorimetric sensors for heavy metal detection and the interaction mechanism. Analyst. 2020;145(9):3173–87.

    Article  CAS  PubMed  Google Scholar 

  18. Guo JL, Yang LL, Zhao CX, Gao ZD, Song YY, Schmuki P. Constructing a photo-enzymatic cascade reaction and its in situ monitoring: enzymes hierarchically trapped in titania meso-porous MOFs as a new photosynthesis platform. J Mater Chem A. 2021;9:14911–9.

    Article  CAS  Google Scholar 

  19. Pedone D, Moglianetti M, Lettieri M, Marrazza G, Pompa PP. Platinum Nanozyme-Enabled Colorimetric Determination of Total Antioxidant Level in Saliva. Anal Chem. 2020;92(13):8660–4.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao XL, Liu JL, Xie FT, Yang T, Hu R, Yang YH. Iodide-enhanced Co/Fe-MOFs nanozyme for sensitively colorimetric detection of H2S. Spectrochim Acta A. 2021;262:120117.

    Article  CAS  Google Scholar 

  21. Li YZ, Zhou H, Li TT, Jian XX, Gao ZD, Song YY. Designing ultrafine PdCo alloys in mesoporous silica nanospheres with peroxidase-like activity and catalase-like activity. J Mater Chem B. 2021;9:2016–24.

    Article  CAS  PubMed  Google Scholar 

  22. Xu HJ, Guo JL, Yang LL, Gao ZD, Song YY. Construction of Peroxidase-like Metal-Organic Frameworks in TiO2 Nanochannels: Robust Free-Standing Membranes for Diverse Target Sensing. Anal Chem. 2021;93:9486–94.

    Article  PubMed  CAS  Google Scholar 

  23. Mao Y, Gao SJ, Yao LL, Wang L, Qu H, Wu Y, et al. Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J Hazard Mater. 2021;408:124898.

    Article  CAS  PubMed  Google Scholar 

  24. Singh S, Tripathi P, Kumar N, Nara S. Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens Bioelectron. 2017;92:280–6.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Q, Gou WX, Zhang XT, Zhang MY, Bu YR, Wang LJ, et al. Hg2+-activated oxidase-like activity of Ag2S@graphene oxide nanozyme and its naked-eye monitoring Hg2+ application with obvious hyperchromic effect. Appl Surf Sci. 2021;545:148973.

    Article  CAS  Google Scholar 

  26. Xing L, Zheng XY, Tang YL, Zhou XM, Hao JK, Hu L, et al. Ag-β-Cyclodextrin-Graphene Oxide Ternary Nanostructures with Peroxidase-Mimicking Activity for Hg2+ Detection. ACS Appl Nano Mater. 2021;4:13807–17.

    Article  CAS  Google Scholar 

  27. Zhao X, Dong RN, Guo BL, Ma PX. Dopamine-Incorporated Dual Bioactive Electroactive Shape Memory Polyurethane Elastomers with Physiological Shape Recovery Temperature, High Stretchability, and Enhanced C2C12 Myogenic Differentiation. ACS Appl Mater Interfaces. 2017;9(35):29595–611.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng X, Xing L, Zhou X, Tang Y, Liu Z, Zhang X, et al. A high-performance visual monitoring of trace toxic NO2- and S2- in 100% aqueous based on the superior oxidase-mimic activity of nano CeO2 strengthened by 2D Co3O4 substrate. Sensors Actuators B Chem. 2022;351:130887.

    Article  CAS  Google Scholar 

  29. Xu XC, Zou XB, Wu SW, Wang LJ, Pan JM, Xu MJ, et al. Colorimetric determination of As(III) based on 3-mercaptopropionic acid assisted active site and interlayer channel dual-masking of Fe-Co-layered double hydroxides with oxidase-like activity. Microchim Acta. 2019;186(12):815.

    Article  CAS  Google Scholar 

  30. Lian Q, Liu H, Zheng XF, Li XM, Zhang FJ, Gao J. Enhanced peroxidase-like activity of CuO/Pt nanoflowers for colorimetric and ultrasensitive Hg2+ detection in water sample. Appl Surf Sci. 2019;483:551–61.

    Article  CAS  Google Scholar 

  31. Xing L, Zhao Q, Zheng XY, Hui MW, Peng YL, Zhu X, et al. Porous Ag-Chitosan Nanospheres Bridged by Cysteine Residues for Colorimetric Sensing of Trace Hg2+. ACS Appl Nano Mater. 2021;4(4):3639–46.

    Article  CAS  Google Scholar 

  32. Yan ZQ, Hu L, Nie L, You JM. One-pot preparation of graphene-Ag nano composite for selective and environmentally-friendly recognition of trace mercury(II). RSC Adv. 2016;6(111):109857–61.

    Article  CAS  Google Scholar 

  33. El-Sheshtawy HS, Ghubish Z, Shoueir KR, El-Kemary M. Activated H2O2 on Ag/SiO2-SrWO4 surface for enhanced dark and visible-light removal of methylene blue and p-nitrophenol. J Alloys Compd. 2020;842:155848.

    Article  CAS  Google Scholar 

  34. Yan ZQ, Guang SY, Xu HY, Su XY, Ji XL, Liu XY. Supramolecular self-assembly structures and properties of zwitterionic squaraine molecules. RSC Adv. 2013;3(21):8021–7.

    Article  CAS  Google Scholar 

  35. Hu L, Zhang L, Zhou YG, Meng GQ, Yu Y, Yao WL, et al. Chitosan-Stabilized Gold Nano Composite Modified Glassy Carbon Electrode for Electrochemical Sensing Trace Hg2+ in Practice. J Electrochem Soc. 2018;165:B900–5.

    Article  CAS  Google Scholar 

  36. Yan ZQ, Xue HT, Berning K, Lam YW, Lee CS. Identification of Multifunctional Graphene-Gold Nanocomposite for Environment-Friendly Enriching, Separating, and Detecting Hg2+ Simultaneously. ACS Appl Mater Interfaces. 2014;6(24):22761–8.

    Article  CAS  PubMed  Google Scholar 

  37. Yang WF, Chen S, Ren WH, Zhao Y, Chen XJ, Jia C, et al. Nanostructured amalgams with tuneable silver-mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide. J Mater Chem A. 2019;7(26):15907–12.

    Article  CAS  Google Scholar 

  38. Gong FY, Zhang JH, Ding L, Yang ZJ, Liu XB. Mussel-inspired coating of energetic crystals: A compact core-shell structure with highly enhanced thermal stability. Chem Eng J. 2017;309:140–50.

    Article  CAS  Google Scholar 

  39. Dhanush C, Sethuraman MG. Independent hydrothermal synthesis of the undoped, nitrogen, boron and sulphur doped biogenic carbon nanodots and their potential application in the catalytic chemo-reduction of Alizarine yellow R azo dye. Spectrochim Acta A. 2021;260:119920.

    Article  CAS  Google Scholar 

  40. Song YJ, Qu KG, Zhao C, Ren JS, Qu XG. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Adv Mater. 2010;22(19):2206–10.

    Article  CAS  PubMed  Google Scholar 

  41. Tao Y, Lin YH, Huang ZZ, Ren JS, Qu XG. Incorporating Graphene Oxide and Gold Nanoclusters: A Synergistic Catalyst with Surprisingly High Peroxidase-Like Activity Over a Broad pH Range and its Application for Cancer Cell Detection. Adv Mater. 2013;25(18):2594–9.

    Article  CAS  PubMed  Google Scholar 

  42. Tan L, Yu CF, Wang M, Zhang SY, Sun JY, Dong SY, et al. Synergistic effect of adsorption and photocatalysis of 3D g-C3N4-agar hybrid aerogels. Appl Surf Sci. 2019;467:286–92.

    Article  CAS  Google Scholar 

  43. Yao JY, Wu TT, Sun Y, Ma ZY, Liu ML, Zhang YY, et al. A novel biomimetic nanoenzyme based on ferrocene derivative polymer NPs coated with polydopamine. Talanta. 2019;195:265–71.

    Article  CAS  PubMed  Google Scholar 

  44. Xu BL, Wang H, Wang WW, Gao LZ, Li SS, Pan XT, et al. A Single-Atom Nanozyme for Wound Disinfection Applications. Angew Chem Int Edit. 2019;58(15):4911–6.

    Article  CAS  Google Scholar 

  45. Yan ZQ, Zhang XZ, Bao C, Tang H, Zhao Q, Hu L, et al. A novel luminol derivative and its functionalized filter-paper for reversible double-wavelength colorimetric pH detection in fruit juice. Sensors Actuators B Chem. 2018;262:869–75.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (Nos: ZR202102210020 and ZR2018MB038) and the National Natural Science Foundation of China (Nos: 21806089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Hu or Zhengquan Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 673 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Lv, X., Gou, W. et al. Ag nanozyme strengthened by folic acid: Superior peroxidase-mimicking activity and application for visual monitoring of dopamine. Anal Bioanal Chem 414, 6611–6620 (2022). https://doi.org/10.1007/s00216-022-04222-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04222-0

Keywords

Navigation