Skip to main content
Log in

Biotransformation of selenium in the mycelium of the fungus Phycomyces blakesleeanus

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Biotransformation of toxic selenium ions to non-toxic species has been mainly focused on biofortification of microorganisms and production of selenium nanoparticles (SeNPs), while far less attention is paid to the mechanisms of transformation. In this study, we applied a combination of analytical techniques with the aim of characterizing the SeNPs themselves as well as monitoring the course of selenium transformation in the mycelium of the fungus Phycomyces blakesleeanus. Red coloration and pungent odor that appeared after only a few hours of incubation with 10 mM Se+4 indicate the formation of SeNPs and volatile methylated selenium compounds. SEM–EDS confirmed pure selenium NPs with an average diameter of 57 nm, which indicates potentially very good medical, optical, and photoelectric characteristics. XANES of mycelium revealed concentration-dependent mechanisms of reduction, where 0.5 mM Se+4 led to the predominant formation of Se–S-containing organic molecules, while 10 mM Se+4 induced production of biomethylated selenide (Se−2) in the form of volatile dimethylselenide (DMSe) and selenium nanoparticles (SeNPs), with the SeNPs/DMSe ratio rising with incubation time. Several structural forms of elemental selenium, predominantly monoclinic Se8 chains, together with trigonal Se polymer chain, Se8 and Se6 ring structures, were detected by Raman spectroscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lenz M, Lens PNL. The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ. 2009;407:3620–33. https://doi.org/10.1016/j.scitotenv.2008.07.056.

    Article  CAS  PubMed  Google Scholar 

  2. Butler CS, Debieux CM, Dridge EJ, Splatt P, Wright M. Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem Soc Trans. 2012;40:1239–43. https://doi.org/10.1042/BST20120087.

    Article  CAS  PubMed  Google Scholar 

  3. Perrone D, Monteiro M, Nunes JC. CHAPTER 1 The chemistry of selenium. In: Selenium: chemistry{,} analysis{,} function and effects. The Royal Society of Chemistry; 2015. pp 3–15.

  4. Nancharaiah YV, Lens PNL. Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev. 2015;79:61–80. https://doi.org/10.1128/mmbr.00037-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100:2555–66. https://doi.org/10.1007/s00253-016-7300-7.

    Article  CAS  PubMed  Google Scholar 

  6. Gharieb MM, Wilkinson SC, Gadd GM. Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol. 1995;14:300–11. https://doi.org/10.1007/BF01569943.

    Article  CAS  Google Scholar 

  7. Khubulava S, Chichiveishvili N, Shavshishvili N, Mulkijanyan K, Khodeli N, Jangavadze M, Tsagareli Z, Dgebuadze M, Phichkhaia G. Effect of high dose of selenium nanoparticles on alimentary tract in rodents. J Nanomed Nanotechnol. 2019;10:2–5. https://doi.org/10.35248/2157-7439.19.10.531.

  8. Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazilian J Microbiol [publication Brazilian Soc Microbiol]. 2010;41:461–466. https://doi.org/10.1590/S1517-838220100002000028.

  9. Zhang H, Zhou H, Bai J, Li Y, Yang J, Ma Q, Qu Y. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf A Physicochem Eng Asp. 2019;571:9–16. https://doi.org/10.1016/j.colsurfa.2019.02.070.

    Article  CAS  Google Scholar 

  10. Avendaño R, Chaves N, Fuentes P, Sánchez E, Jiménez JI, Chavarría M. Production of selenium nanoparticles in Pseudomonas putida KT2440. Sci Rep. 2016;6:1–9. https://doi.org/10.1038/srep37155.

    Article  CAS  Google Scholar 

  11. Zare B, Babaie S, Setayesh N, Shahverdi AR, Shahverdi A. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles extracellular synthesis of selenium nanoparticles using fungi. Nanomed J. 2013;1:13–9.

    Google Scholar 

  12. Liang X, Perez MAMJ, Nwoko KC, Egbers P, Feldmann J, Csetenyi L, Gadd GM. Fungal formation of selenium and tellurium nanoparticles. Appl Microbiol Biotechnol. 2019;103:7241–59. https://doi.org/10.1007/s00253-019-09995-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sabuda MC, Rosenfeld CE, DeJournett TD, Schroeder K, Wuolo-Journey K, Santelli CM. Fungal bioremediation of selenium-contaminated industrial and municipal wastewaters. Front Microbiol. 2020;11.https://doi.org/10.3389/fmicb.2020.02105.

  14. Espinosa-Ortiz EJ, Gonzalez-Gil G, Saikaly PE, van Hullebusch ED, Lens PNL. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol. 2015;99:2405–18. https://doi.org/10.1007/s00253-014-6127-3.

    Article  CAS  PubMed  Google Scholar 

  15. Vetchinkina E, Loshchinina E, Kursky V, Nikitina V. Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol. 2013;51:829–35. https://doi.org/10.1007/s12275-013-2689-5.

    Article  CAS  PubMed  Google Scholar 

  16. Žižić M, Živić M, Maksimović V, Stanić M, Križak S, Antić TC, Zakrzewska J. Vanadate influence on metabolism of sugar phosphates in fungus Phycomyces blakesleeanus. PLoS One. 2014;9.https://doi.org/10.1371/journal.pone.0102849.

  17. Jackson BP, Pace HE, Lanzirotti A, Smith R, Ranville JF. Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna. Anal Bioanal Chem. 2009;394:911–7. https://doi.org/10.1007/s00216-009-2768-y.

    Article  CAS  PubMed  Google Scholar 

  18. Weekley CM, Aitken JB, Vogt S, Finney LA, Paterson DJ, De Jonge MD, Howard DL, Musgrave IF, Harris HH. Uptake, distribution, and speciation of selenoamino acids by human cancer cells: X-ray absorption and fluorescence methods. Biochemistry. 2011;50:1641–50. https://doi.org/10.1021/bi101678a.

    Article  CAS  PubMed  Google Scholar 

  19. Weekley CM, Aitken JB, Finney L, Vogt S, Witting PK, Harris HH. Selenium metabolism in cancer cells: the combined application of XAS and XFM techniques to the problem of selenium speciation in biological systems. Nutrients. 2013;5:1734–56. https://doi.org/10.3390/nu5051734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S. Structural and spectral features of selenium nanospheres produced by se-respiring bacteria. Appl Environ Microbiol. 2004;70:52–60. https://doi.org/10.1128/AEM.70.1.52-60.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sutter RP. Mutations affecting sexual development in Phycomyces blakesleeanus. Proc Natl Acad Sci USA. 1975;72:127–30. https://doi.org/10.1073/pnas.72.1.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karydas AG, Czyzycki M, Leani JJ, Migliori A, Osan J, Bogovac M, Wrobel P, Vakula N, Padilla-Alvarez R, Menk RH, Gol MG, Antonelli M, Tiwari MK, Caliri C, Vogel-Mikuš K, Darby I, Kaiser RB. An IAEA multi-technique X-ray spectrometry endstation at Elettra Sincrotrone Trieste: benchmarking results and interdisciplinary applications. J Synchrotron Radiat. 2018;25:189–203. https://doi.org/10.1107/S1600577517016332.

    Article  CAS  PubMed  Google Scholar 

  23. Jark W, Eichert D, Luehl L, Gambitta A. Optimisation of a compact optical system for the beamtransport at the x-ray fluorescence beamline at Elettra for experiments with small spots. Adv X-Ray/EUV Opt Components IX. 2014;9207:92070G. https://doi.org/10.1117/12.2063009.

    Article  Google Scholar 

  24. Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat. 2005;12:537–41. https://doi.org/10.1107/S0909049505012719.

    Article  CAS  PubMed  Google Scholar 

  25. Mehta BJ, Salgado LM, Bejarano ER, Cerdá-Olmedo E. New mutants of Phycomyces blakesleeanus for β-carotene production. Appl Environ Microbiol. 1997;63:3657–61. https://doi.org/10.1128/aem.63.9.3657-3661.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vogel M, Fischer S, Maffert A, Hübner R, Scheinost AC, Franzen C, Steudtner R. Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. J Hazard Mater. 2018;344:749–57. https://doi.org/10.1016/j.jhazmat.2017.10.034.

    Article  CAS  PubMed  Google Scholar 

  27. Kessi J, Hanselmann KW. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem. 2004;279:50662–9. https://doi.org/10.1074/jbc.M405887200.

    Article  CAS  PubMed  Google Scholar 

  28. Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, Melotti P, Lleo MM, Vallini G. Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol. 2016;9:758–71. https://doi.org/10.1111/1751-7915.12374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dwivedi S, AlKhedhairy AA, Ahamed M, Musarrat J. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel Se-bioassay. PLoS ONE. 2013;8:1–10. https://doi.org/10.1371/journal.pone.0057404.

    Article  CAS  Google Scholar 

  30. Prasad KS, Patel H, Patel T, Patel K, Selvaraj K. Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerfaces. 2013;103:261–6. https://doi.org/10.1016/j.colsurfb.2012.10.029.

    Article  CAS  PubMed  Google Scholar 

  31. Peng D, Zhang J, Liu Q, Taylor EW. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem. 2007;101:1457–63. https://doi.org/10.1016/j.jinorgbio.2007.06.021.

    Article  CAS  PubMed  Google Scholar 

  32. Bluemlein K, Raab A, Meharg AA, Charnock JM, Feldmann J. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata. Anal Bioanal Chem. 2008;390:1739–51. https://doi.org/10.1007/s00216-007-1724-y.

    Article  CAS  PubMed  Google Scholar 

  33. Žižić M, Dučić T, Grolimund D, Bajuk-Bogdanović D, Nikolic M, Stanić M, Križak S, Zakrzewska J. X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in phycomyces blakesleeanus mycelium. Anal Bioanal Chem. 2015;407:7487–96. https://doi.org/10.1007/s00216-015-8916-7.

    Article  CAS  PubMed  Google Scholar 

  34. Yu Q, Boyanov MI, Liu J, Kemner KM, Fein JB. Adsorption of selenite onto Bacillus subtilis: the overlooked role of cell envelope sulfhydryl sites in the microbial conversion of Se(IV). Environ Sci Technol. 2018;52:10400–7. https://doi.org/10.1021/acs.est.8b02280.

    Article  CAS  PubMed  Google Scholar 

  35. Weekley CM, Shanu A, Aitken JB, Vogt S, Witting PK, Harris HH. XAS and XFM studies of selenium and copper speciation and distribution in the kidneys of selenite-supplemented rats. Metallomics. 2014;6:1602–15. https://doi.org/10.1039/c4mt00088a.

    Article  CAS  PubMed  Google Scholar 

  36. Ruiz-Fresneda MA, Eswayah AS, Romero-González M, Gardiner PHE, Solari PL, Merroun ML. Chemical and structural characterization of SeIVbiotransformations by: Stenotrophomonas bentonitica into Se0nanostructures and volatiles Se species. Environ Sci Nano. 2020;7:2140–55. https://doi.org/10.1039/d0en00507j.

    Article  CAS  Google Scholar 

  37. Lenz M, Van Hullebusch ED, Farges F, Nikitenko S, Borca CN, Grolimund D, Lens PNL. Selenium speciation assessed by X-ray absorption spectroscopy of sequentially extracted anaerobic biofilms. Environ Sci Technol. 2008;42:7587–93. https://doi.org/10.1021/es800811q.

    Article  CAS  PubMed  Google Scholar 

  38. Chasteen TG. Confusion between dimethyl selenenyl sulfide and dimethyl selenone released by bacteria. Appl Organomet Chem. 1993;7:335–42. https://doi.org/10.1002/aoc.590070507.

    Article  CAS  Google Scholar 

  39. Chasteen TG, Bentley R. Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev. 2003;103:1–25. https://doi.org/10.1021/cr010210+.

    Article  CAS  PubMed  Google Scholar 

  40. Van Fleet-Stalder V, Chasteen TG, Pickering IJ, George GN, Prince RC. Fate of selenate and selenite metabolized by Rhodobacter sphaeroides. Appl Environ Microbiol. 2000;66:4849–53. https://doi.org/10.1128/AEM.66.11.4849-4853.2000.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brady JM, Tobin JM, Gadd GM. Volatilization of selenite in aqueous medium by a Penicillium species. Mycol Res. 1996;100:955–61. https://doi.org/10.1016/S0953-7562(96)80048-7.

    Article  CAS  Google Scholar 

  42. Rosenfeld CE, Kenyon JA, James BR, Santelli CM. Selenium (IV, VI) reduction and tolerance by fungi in an oxic environment. Geobiology. 2017;15:441–52. https://doi.org/10.1111/gbi.12224.

    Article  CAS  PubMed  Google Scholar 

  43. Vriens B, Behra R, Voegelin A, Zupanic A, Winkel LHE. Selenium uptake and methylation by the microalga Chlamydomonas reinhardtii. Environ Sci Technol. 2016;50:711–20. https://doi.org/10.1021/acs.est.5b04169.

    Article  CAS  PubMed  Google Scholar 

  44. Fan TWM, Lane AN, Higashi RM. Selenium biotransformations by a euryhaline microalga isolated from a saline evaporation pond. Environ Sci Technol. 1997;31:569–76. https://doi.org/10.1021/es960471e.

    Article  CAS  Google Scholar 

  45. Lindblow-Kull C, Kull FJ, Shrift A. Evidence for the biosynthesis of selenobiotin. Biochem Biophys Res Commun. 1980;93:572–6.

    Article  CAS  Google Scholar 

  46. Cherin P, Unger P. The crystal structure of trigonal selenium. Inorg Chem. 1967;6:1589–91. https://doi.org/10.1021/ic50054a037.

    Article  CAS  Google Scholar 

  47. Poborchii VV, Kolobov AV, Oyanagi H, Romanov SG, Tanaka K. Structure of selenium incorporated into nanochannels of mordenite: dependence on ion exchange and method of incorporation. Chem Phys Lett. 1997;280:10–6. https://doi.org/10.1016/S0009-2614(97)01086-5.

    Article  CAS  Google Scholar 

  48. Kohara S, Goldbach A, Koura N, Saboungi ML, Curtiss LA. Vibrational frequencies of small selenium molecules. Chem Phys Lett. 1998;287:282–8. https://doi.org/10.1016/S0009-2614(98)00184-5.

    Article  CAS  Google Scholar 

  49. Goldan AH, Li C, Pennycook SJ, Schneider J, Blom A, Zhao W. Molecular structure of vapor-deposited amorphous selenium. J Appl Phys. 2016;120.https://doi.org/10.1063/1.4962315.

  50. Tugarova AV, Mamchenkova PV, Dyatlova YA, Kamnev AA. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2018;192:458–63. https://doi.org/10.1016/j.saa.2017.11.050.

    Article  CAS  Google Scholar 

  51. Mooradian A, Wright GB (1969). The Raman spectrum of trigonal $α$-monoclinic and amorphous selenium. In: W. C. Cooper, editor. Proceedings of the international symposium, physics of selenium and tellurium. (Pergamon Press, 1969). pp. 269–276. https://doi.org/10.1016/B978-0-08-013895-4.50026-X.

  52. Brodsky MH, Gambino RJ, Smith JE, Yacoby Y. The Raman spectrum of amorphous tellurium. Phys Status Solidi. 1972;52:609–14. https://doi.org/10.1002/pssb.2220520229.

    Article  CAS  Google Scholar 

  53. Poborchii V, Kolobov A, Oyanagi H, Romanov S, Tanaka K. Raman and x-ray absorption study of selenium incorporated into the channels of mordenite: dependence on the ion exchange and the method of incorporation. Nanostructured Mater. 1998;10:427–36. https://doi.org/10.1016/S0965-9773(98)00083-X.

    Article  CAS  Google Scholar 

  54. Wang T, Yang L, Zhang B, Liu J. Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B Biointerfaces. 2010;80:94–102. https://doi.org/10.1016/j.colsurfb.2010.05.041.

    Article  CAS  PubMed  Google Scholar 

  55. Lucovsky, G., Mooradian, A., Taylor, W., Wright, G. B., Keezer, R. C. (1967). Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium. Solid State Communications. 5(2):113–117. https://doi.org/10.1016/00381098(67)90006-3.

  56. Poborchii VV. Polarized raman and optical absorption spectra of the mordenite single crystals containing sulfur, selenium, or tellurium in the one-dimensional nanochannels. Chem Phys Lett. 1996;251:230–4. https://doi.org/10.1016/0009-2614(96)00045-0.

    Article  CAS  Google Scholar 

  57. Eswayah AS, Smith TJ, Gardiner PHE. Microbial transformations of selenium species of relevance to bioremediation. Appl Environ Microbiol. 2016;82:4848–59. https://doi.org/10.1128/AEM.00877-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lindblom SD, Wangeline AL, Valdez Barillas JR, Devilbiss B, Fakra SC, Pilon-Smits EAH. Fungal endophyte alternaria tenuissima can affect growth and selenium accumulation in its hyperaccumulator host astragalus bisulcatus. Front Plant Sci. 2018;9:1–12. https://doi.org/10.3389/fpls.2018.01213.

    Article  Google Scholar 

  59. Schröder I, Rech S, Krafft T, Macy JM. Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem. 1997;272:23765–8. https://doi.org/10.1074/jbc.272.38.23765.

    Article  PubMed  Google Scholar 

  60. Yee N, Ma J, Dalia A, Boonfueng T, Kobayashi DY. Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microbiol. 2007;73:1914–20. https://doi.org/10.1128/AEM.02542-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kieliszek M, Błażejak S, Gientka I, Bzducha-Wróbel A. Accumulation and metabolism of selenium by yeast cells. Appl Microbiol Biotechnol. 2015;99:5373–82. https://doi.org/10.1007/s00253-015-6650-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doran, J.W. (1982). Microorganisms and the Biological Cycling of Selenium. In: Marshall, K.C. (eds) Advances in microbial ecology. Advances in Microbial Ecology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8318-9_1.

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Contract nos. 451-03-68/2022-14/200053; 451-03-68/2022-14/200051; and 451-03-68/2022-14/ 200178. The XANES experiment was conducted in the frame of the user proposal number 20200229 at XRF beamline at the Elettra synchrotron facility and funded by the International Atomic Energy Agency (IAEA). The authors are grateful to Dr. Smilja Marković of the Institute of Technical Sciences, Serbian Academy of Sciences, for DLS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Žižić.

Ethics declarations

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Žižić, M., Stanić, M., Aquilanti, G. et al. Biotransformation of selenium in the mycelium of the fungus Phycomyces blakesleeanus. Anal Bioanal Chem 414, 6213–6222 (2022). https://doi.org/10.1007/s00216-022-04191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04191-4

Keywords

Navigation