Skip to main content

Advertisement

Log in

Surface-enhanced Raman spectroscopy for drug discovery: peptide-RNA binding

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The ever-growing demand for new drugs highlights the need to develop novel cost- and time-effective techniques for drug discovery. Surface-enhanced Raman spectroscopy (SERS) is an emerging ultrasensitive and label-free technique that allows for the efficient detection and characterization of molecular interactions. We have recently developed a SERS platform for detecting a single protein molecule linked to a gold substrate (Almehmadi et al. Scientific Reports 2019). In this study, we extended the approach to probe the binding of potential drugs to RNA targets. To demonstrate the proof of concept, two 16-amino acid residue peptides with close primary structures and different binding affinities to the RNA CUG repeat related to myotonic dystrophy were tested. Three-microliter solutions of the RNA repeat with these peptides at nanomolar concentrations were probed using the developed approach, and the binding of only one peptide was demonstrated. The SER spectra exhibited significant fluctuations along with a sudden strong enhancement as spectra were collected consecutively from individual spots. Principal component analysis (PCA) of the SER spectral datasets indicated that free RNA repeats could be differentiated from those complexed with a peptide with 100% accuracy. The developed SERS platform provides a novel opportunity for label-free screening of RNA-binding peptides for drug discovery.

Graphical abstract

Schematic representation of the SERS platform for drug discovery developed in this study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Todd PK, Paulson HL. RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol. 2010;67(3):291–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Rourke JR, Swanson MS. Mechanisms of RNA-mediated disease. J Biol Chem. 2009;284(12):7419–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell. 2009;136(4):777–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cerro-Herreros E, Chakraborty M, Pérez-Alonso M, Artero R, Llamusí B. Expanded CCUG repeat RNA expression in Drosophila heart and muscle trigger Myotonic Dystrophy type 1-like phenotypes and activate autophagocytosis genes. Sci Rep. 2017;7(1):2843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rzuczek SG, Colgan LA, Nakai Y, Cameron MD, Furling D, Yasuda R, et al. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat Chem Biol. 2017;13(2):188–93.

    Article  CAS  PubMed  Google Scholar 

  6. Wong C-H, Nguyen L, Peh J, Luu LM, Sanchez JS, Richardson SL, et al. Targeting toxic RNAs that cause myotonic dystrophy type 1 (DM1) with a bisamidinium inhibitor. J Am Chem Soc. 2014;136(17):6355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Renner S, Ludwig V, Boden O, Scheffer U, Göbel M, Schneider G. New Inhibitors of the Tat–TAR RNA interaction found with a “fuzzy” pharmacophore model. ChemBioChem. 2005;6(6):1119–25.

    Article  CAS  PubMed  Google Scholar 

  8. Gallego J, Varani G. Targeting RNA with small-molecule drugs: therapeutic promise and chemical challenges. Acc Chem Res. 2001;34(10):836–43.

    Article  CAS  PubMed  Google Scholar 

  9. Athanassiou Z, Patora K, Dias RLA, Moehle K, Robinson JA, Varani G. Structure-guided peptidomimetic design leads to nanomolar β-hairpin inhibitors of the Tat−TAR interaction of bovine immunodeficiency virus. Biochemistry. 2007;46(3):741–51.

    Article  CAS  PubMed  Google Scholar 

  10. DeJong ES, Chang C-e, Gilson MK, Marino JP. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1. Biochemistry. 2003;42(26):8035–46.

  11. Pai J, Yoon T, Kim ND, Lee I-S, Yu J, Shin I. High-throughput profiling of peptide–RNA interactions using peptide microarrays. J Am Chem Soc. 2012;134(46):19287–96.

    Article  CAS  PubMed  Google Scholar 

  12. Blass BE. Chapter 4 - In vitro Screening Systems. In: Blass BE, editor. Basic principles of drug discovery and development. Boston: Academic Press; 2015. p. 143-202.

  13. Almehmadi LM, Curley SM, Tokranova NA, Tenenbaum SA, Lednev IK. Surface enhanced Raman spectroscopy for single molecule protein detection. Sci Rep. 2019;9(1):12356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275(5303):1102.

    Article  CAS  PubMed  Google Scholar 

  15. Kneipp K, Kneipp H, Kneipp J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatesfrom single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res. 2006;39(7):443–50.

    Article  CAS  PubMed  Google Scholar 

  16. Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria RP, Krahne R, et al. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced Raman scattering. Adv Mater. 2014;26(15):2353–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kitahama Y, Funaoka M, Ozaki Y. Plasmon-enhanced optical tweezers for single molecules on and near a colloidal silver nanoaggregate. J Phys Chem C. 2019;123(29):18001–6.

    Article  CAS  Google Scholar 

  18. Phan HT, Geng S, Haes AJ. Microporous silica membranes promote plasmonic nanoparticle stability for SERS detection of uranyl. Nanoscale. 2020;12(46):23700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harder RA, Wijenayaka LA, Phan HT, Haes AJ. Tuning gold nanostar morphology for the SERS detection of uranyl. J Raman Spectrosc. 2021;52(2):497–505.

    Article  CAS  PubMed  Google Scholar 

  20. Moore TJ, Moody AS, Payne TD, Sarabia GM, Daniel AR, Sharma B. In vitro and in vivo SERS biosensing for disease diagnosis. Biosensors (Basel). 2018;8(2):46. https://doi.org/10.3390/bios8020046.

  21. Kneipp J, Kneipp H, Wittig B, Kneipp K. Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C. 2010;114(16):7421–6.

    Article  CAS  Google Scholar 

  22. Wang L, Vendrell-Dones MO, Deriu C, Doğruer S, de B Harrington P, McCord B. Multivariate Analysis Aided Surface-Enhanced Raman Spectroscopy (MVA-SERS) Multiplex quantitative detection of trace Fentanyl in illicit drug mixtures using a handheld Raman spectrometer. Appl Spectrosc. 2021;75(10):1225–1236. https://doi.org/10.1177/00037028211032930. Epub 2021 Jul 28.

  23. Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A review on surface-enhanced Raman scattering. Biosensors (Basel). 2019;9(2):57.

    Article  CAS  Google Scholar 

  24. Bosnick KA, Jiang J, Brus LE. Fluctuations and local symmetry in single-molecule Rhodamine 6G Raman scattering on silver nanocrystal aggregates@. 2002;106:8096–9.

  25. Zrimsek AB, Chiang N, Mattei M, Zaleski S, McAnally MO, Chapman CT, et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem Rev. 2017;117(11):7583–613.

    Article  CAS  PubMed  Google Scholar 

  26. Lindquist NC, de Albuquerque CDL, Sobral-Filho RG, Paci I, Brolo AG. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat Nanotechnol. 2019;14(10):981–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ralbovsky NM, Lednev IK. Raman hyperspectroscopy shows promise for diagnosis of Alzheimer’s. Biophotonics. 2018;4(25):33–7.

    Google Scholar 

  28. Ralbovsky NM, Lednev IK. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem Soc Rev. 2020;49(20):7428–53.

    Article  CAS  PubMed  Google Scholar 

  29. Mistek E, Halámková L, Doty KC, Muro CK, Lednev IK. Race differentiation by Raman spectroscopy of a bloodstain for forensic purposes. Anal Chem. 2016;88(15):7453–6.

    Article  CAS  PubMed  Google Scholar 

  30. Altunbek M, Çetin D, Suludere Z, Çulha M. Surface-enhanced Raman spectroscopy based 3D spheroid culture for drug discovery studies. Talanta. 2019;191:390–9.

    Article  CAS  PubMed  Google Scholar 

  31. Karthigeyan D, Siddhanta S, Kishore AH, Perumal SSRR, Ågren H, Sudevan S, et al. SERS and MD simulation studies of a kinase inhibitor demonstrate the emergence of a potential drug discovery tool. Proc Natl Acad Sci. 2014;111(29):10416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han G, Liu R, Han M-Y, Jiang C, Wang J, Du S, et al. Label-free surface-enhanced Raman scattering imaging to monitor the metabolism of antitumor drug 6-mercaptopurine in living cells. Anal Chem. 2014;86(23):11503–7.

    Article  CAS  PubMed  Google Scholar 

  33. Xi J, Yu Q. The development of lateral flow immunoassay strip tests based on surface enhanced Raman spectroscopy coupled with gold nanoparticles for the rapid detection of soybean allergen β-conglycinin. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;241: 118640.

    Article  CAS  Google Scholar 

  34. Song C, Min L, Zhou N, Yang Y, Su S, Huang W, et al. Synthesis of novel gold mesoflowers as SERS tags for immunoassay with improved sensitivity. ACS Appl Mater Interfaces. 2014;6(24):21842–50.

    Article  CAS  PubMed  Google Scholar 

  35. Lichtenberg JY, Ling Y, Kim S. Non-specific adsorption reduction methods in biosensing. Sensors (Basel). 2019;19(11):2488.

    Article  CAS  Google Scholar 

  36. Muhammad M, Huang Q. A review of aptamer-based SERS biosensors: design strategies and applications. Talanta. 2021;227: 122188.

    Article  CAS  PubMed  Google Scholar 

  37. Ochsenkühn MA, Campbell CJ. Probing biomolecular interactions using surface enhanced Raman spectroscopy: label-free protein detection using a G-quadruplex DNA aptamer. Chem Commun. 2010;46(16):2799–801.

    Article  CAS  Google Scholar 

  38. Lu Y, Huang Q, Meng G, Wu L, Jingjing Z. Label-free selective SERS detection of PCB-77 based on DNA aptamer modified SiO2@Au core/shell nanoparticles. Analyst. 2014;139(12):3083–7.

    Article  CAS  PubMed  Google Scholar 

  39. Lu Y, Zhong J, Yao G, Huang Q. A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles. Sens Actuators, B Chem. 2018;258:365–72.

    Article  CAS  Google Scholar 

  40. Konigsberg W. [13] Reduction of disulfide bonds in proteins with dithiothreitol. Methods Enzymol. 1972;25:185–8.

    Article  CAS  PubMed  Google Scholar 

  41. dos Santos DP, Temperini MLA, Brolo AG. Intensity fluctuations in single-molecule surface-enhanced Raman scattering. Acc Chem Res. 2019;52(2):456–64.

    Article  PubMed  CAS  Google Scholar 

  42. Spiro TG, Gaber BP. Laser Raman scattering as a probe of protein structure. Annu Rev Biochem. 1977;46(1):553–70.

    Article  CAS  PubMed  Google Scholar 

  43. Stewart S, Fredericks PM. Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface. Spectrochim Acta Part A Mol Biomol Spectrosc. 1999;55(7):1641–60.

    Article  Google Scholar 

  44. Culka A, Jehlička J, Edwards HGM. Acquisition of Raman spectra of amino acids using portable instruments: outdoor measurements and comparison. Spectrochim Acta Part A Mol Biomol Spectrosc. 2010;77(5):978–83.

    Article  CAS  Google Scholar 

  45. Podstawka E, Ozaki Y, Proniewicz LM. Part III: Surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface. Appl Spectrosc. 2005;59(12):1516–26.

    Article  CAS  PubMed  Google Scholar 

  46. Satnami M, Chandraker K, Vaishanav S, Nagwanshi R. Interaction of thiolated amino acids and peptides onto the gold nanoparticle surface: radical scavenging activity. Indian J Chem Sect A. 2015;54A:1206–14.

    Google Scholar 

  47. Bido AT, Nordberg BG, Engevik MA, Lindquist NC, Brolo AG. High-speed fluctuations in surface-enhanced Raman scattering intensities from various nanostructures. Appl Spectrosc. 2020;74(11):1398–406.

    Article  CAS  PubMed  Google Scholar 

  48. Emory SR, Jensen RA, Wenda T, Han M, Nie S. Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS. Faraday Discuss. 2006;132:249–59.

    Article  CAS  PubMed  Google Scholar 

  49. Carnegie C, Griffiths J, de Nijs B, Readman C, Chikkaraddy R, Deacon WM, et al. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries. J Phys Chem Lett. 2018;9(24):7146–51.

    Article  CAS  PubMed  Google Scholar 

  50. Benz F, Schmidt MK, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, et al. Single-molecule optomechanics in “picocavities.” Science. 2016;354(6313):726.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (CHE-1845486, J.S.) and National Institutes of Health (NIH, R35GM124720, K.H., and R35GM138336, Q.Z.) for the financial support. We would like to thank Dr. David S. Burz for providing technical help with the electroplating setup, Dr. Natalya Tokranova for her help with the SERS substrate preparation, and Dr. Peter de B. Harrington for his insights regarding the PCA.

Author information

Authors and Affiliations

Authors

Contributions

I.K.L. and J.S. conceived the project. L.M.A. conducted the experiments, including sample preparation, SERS substrate manufacturing, and SERS spectroscopic data acquisition. V.V. and K.H. conducted the ITC and gel shifting experiments. L.M.A. and I.K.L. analyzed the SERS data. Q.Z. synthesized the initial peptide pool. L.M.A. and I.K.L. wrote the manuscript with input from all authors. All of the authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Jia Sheng or Igor K. Lednev.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 977 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almehmadi, L.M., Valsangkar, V.A., Halvorsen, K. et al. Surface-enhanced Raman spectroscopy for drug discovery: peptide-RNA binding. Anal Bioanal Chem 414, 6009–6016 (2022). https://doi.org/10.1007/s00216-022-04190-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04190-5

Keywords

Navigation