Skip to main content
Log in

A simple and rapid homogeneous fluorescence polarization immunoassay for rapid identification of gutter cooking oil by detecting capsaicinoids

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In order to address the widespread concerns with food safety such as adulteration and forgery in the edible oil field, this study developed a fluorescence polarization immunoassay (FPIA) based on a monoclonal antibody in a homogeneous solution system for determination of capsaicinoids in gutter cooking oil by using chemically stable capsaicinoids as an adulteration marker. The prepared fluoresceinthiocarbamyl ethylenediamine (EDF) was coupled with capsaicinoid hapten C, and the synthesized tracer was purified by thin-layer chromatography (TLC) and showed good binding to the monoclonal antibody CPC Ab-D8. The effects of concentration of tracer and recognition components, type and pH of buffer and incubation time on the performance of FPIA were studied. The linear range (IC20 to IC80) was 3.97–97.99 ng/mL, and the half maximal inhibitory concentration (IC50) was 19.73 ng/mL, and the limit of detection (LOD) was 1.56 ng/mL. The recovery rates of corn germ oil, soybean oil and peanut blend oil were in the range of 94.7–132.3%. The experimental results showed that the fluorescence polarization detection system could realize the rapid detection of capsaicinoids, and had the potential to realize on-site identification of gutter cooking oil. As a universal monoclonal antibody, CPC Ab-D8 can also specifically identify capsaicin and dihydrocapsaicin, so the proposed method can be used to quickly monitor for the presence of gutter cooking oil in normal cooking oil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou Y, Zhao W, Lai Y, Zhang B, Zhang D. Edible plant oil: global status, health issues, and perspectives. Front Plant Sci. 2020;11:1315. https://doi.org/10.3389/fpls.2020.01315.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang ZM, Xin JX, Sun SS, Li Y, Wei DX, Zhu J, Wang XL, Wang J, Yao YF. Rapid identification of adulteration in edible vegetable oils based on low-field nuclear magnetic resonance relaxation fingerprints. Foods. 2021;10(12):3068. https://doi.org/10.3390/foods10123068.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chapa-Oliver AM, Mejía-Teniente L. Capsaicin: from plants to a cancer-suppressing agent. Molecules. 2016;21(8):931. https://doi.org/10.3390/molecules21080931.

    Article  CAS  PubMed Central  Google Scholar 

  4. Kim DH, Lee WY. Highly sensitive electrochemical capsaicin sensor based on graphene-titania-Nafion composite film. J Electroanal Chem. 2016;776:74–81. https://doi.org/10.1016/j.jelechem.2016.06.035.

    Article  CAS  Google Scholar 

  5. Dewey A, Baughan C, Dean TP, Higgins B, Johnson I. Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Db Syst Rev. 2007;2007(1):DC004597. https://doi.org/10.1002/14651858.CD004597.pub2.

    Article  Google Scholar 

  6. He Z, Wang Y, Wang L, Peng Y, Wang W, Liu X. Determination of 255 pesticides in edible vegetable oils using QuEChERS method and gas chromatography tandem mass spectrometry. Anal Bioanal Chem. 2017;409(4):1017–30. https://doi.org/10.1007/s00216-016-0016-9.

    Article  CAS  PubMed  Google Scholar 

  7. Sganzerla M, Coutinho JP, de Melo AMT, Godoy HT. Fast method for capsaicinoids analysis from Capsicum chinense fruits. Food Res Int. 2014;64(0):718–25. https://doi.org/10.1016/j.foodres.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  8. Einolghozati M, Talebi-Ghane E, Ranjbar A, Mehri F. Concentration of aflatoxins in edible vegetable oils: a systematic meta-analysis review. Eur Food Res Technol. 2021;247(12):2887–97. https://doi.org/10.1007/s00217-021-03844-5.

    Article  CAS  Google Scholar 

  9. Amirav A, Neumark B, Margolin Eren KJ, Fialkov AB, Tal N. Cannabis and its cannabinoids analysis by gas chromatography-mass spectrometry with Cold EI. J Mass Spectrom. 2021;56(6):e4726. https://doi.org/10.1002/jms.4726.

    Article  CAS  PubMed  Google Scholar 

  10. Tan J, Li R, Jiang ZT, Tang SH, Wang Y, Shi M, Xiao YQ, Jia B, Lu TX, Wang H. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil. Food Chem. 2017;217:274–80. https://doi.org/10.1016/j.foodchem.2016.08.053.

    Article  CAS  PubMed  Google Scholar 

  11. Yang H, He Q, Eremin SA, Pan J, Zou Y, Cui X, Zhao S. Fluorescence polarization immunoassay for rapid determination of dehydroepiandrosterone in human urine. Anal Bioanal Chem. 2021;413(17):4459–69. https://doi.org/10.1007/s00216-021-03403-7.

    Article  CAS  PubMed  Google Scholar 

  12. Bai Y, Jiang H, Zhang Y, Dou L, Liu M, Yu W, Wen K, Shen J, Ke Y, Yu X, Wang Z. Hydrophobic moiety of capsaicinoids haptens enhancing antibody performance in immunoassay: evidence from computational chemistry and molecular recognition. J Agric Food Chem. 2021;69(34):9957–67. https://doi.org/10.1021/acs.jafc.1c03657.

    Article  CAS  PubMed  Google Scholar 

  13. Wu Q, Yao L, Qin P, Xu J, Sun X, Yao B, Ren F, Chen W. Time-resolved fluorescent lateral flow strip for easy and rapid quality control of edible oil. Food Chem. 2021;357:129739. https://doi.org/10.1016/j.foodchem.2021.129739.

    Article  CAS  PubMed  Google Scholar 

  14. Yang Q, Zhu J, Ma F, Li P, Zhang L, Zhang W, Ding X, Zhang Q. Quantitative determination of major capsaicinoids in serum by ELISA and time-resolved fluorescent immunoassay based on monoclonal antibodies. Biosens Bioelectron. 2016;81:229–35. https://doi.org/10.1016/j.bios.2016.02.074.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Q, Wu Y, Shi X, Dong H, Liu H, Zheng Y, Yang Q, Sun X, Guo Y, Zhao S. Rapid quantitative detection of capsaicinoids in serum based on an electrochemical immunosensor with a dual-signal amplification strategy. J Solid State Electrochem. 2020;25(2):671–81. https://doi.org/10.1007/s10008-020-04833-6.

    Article  CAS  Google Scholar 

  16. Ma F, Yang Q, Matthäus B, Li P, Zhang Q, Zhang L. Simultaneous determination of capsaicin and dihydrocapsaicin for vegetable oil adulteration by immunoaffinity chromatography cleanup coupled with LC-MS/MS. J Chromatogr B. 2016;1021:137–44. https://doi.org/10.1016/j.jchromb.2015.12.017.

    Article  CAS  Google Scholar 

  17. Zhen G, Xiu-qin L, Fang-yuan G, Qing-he Z, Hong-mei L. Determination of capsaicinoids in edible oil by liquid chromatography-isotope dilution mass spectrometry. Chem Reagents 2016;38(6):491–5. https://doi.org/10.13822/j.cnki.hxsj.2016.06.001.

    Article  CAS  Google Scholar 

  18. Lisha M, Honghe L, Li K, Jie J, Shicheng L, Guihua L, Pingjian D. Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils. J Hyg Res. 2014;43(4):614–9. https://doi.org/10.19813/j.cnki.weishengyanjiu.2014.04.018.

    Article  Google Scholar 

  19. Nishiyama K, Takeda Y, Takahashi K, Fukuyama M, Maeki M, Ishida A, Tani H, Shigemura k, Hibara A, Ogawa H, Manabu T. Non-competitive fluorescence polarization immunoassay for detection of H5 avian influenza virus using a portable analyzer. Anal Bioanal Chem. 2021;413(18):4916–623. https://doi.org/10.1007/s00216-021-03193-y.

    Article  CAS  Google Scholar 

  20. Li Y, Zhao Q. Antibody and aptamer-based competitive fluorescence polarization/anisotropy assays for ochratoxin A with tetramethylrhodamine-labeled ochratoxin A. Anal Methods-UK. 2021;13(13):1612–7. https://doi.org/10.1039/d1ay00003a.

    Article  CAS  Google Scholar 

  21. Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence polarization-based bioassays: new horizons. Sensors-basel. 2020;20(24):7132. https://doi.org/10.3390/s20247132.

    Article  CAS  PubMed Central  Google Scholar 

  22. Li Y, Zhao Q. Antibody-and aptamer-based competitive fluorescence polarization/anisotropy assays for ochratoxin A with tetramethylrhodamine-labeled ochratoxin A. Anal Methods. 2021;13(13):1612–7. https://doi.org/10.1039/d1ay00003a.

    Article  CAS  PubMed  Google Scholar 

  23. Ma P, Ye H, Deng J, Khan IM, Yue L, Wang Z. A fluorescence polarization aptasensor coupled with polymerase chain reaction and streptavidin for chloramphenicol detection. Talanta. 2019;205:120119. https://doi.org/10.1016/j.talanta.2019.120119.

    Article  CAS  PubMed  Google Scholar 

  24. Pourfarzaneh M, White GW, Landon J, Smith DS. Cortisol directly determination in serum by fluoroimmunoassay with magnetizable solid phase. Clin Chem. 1980;26(6):730–3. https://doi.org/10.1093/clinchem/26.6.730.

    Article  CAS  PubMed  Google Scholar 

  25. Han X, Li L, Diao J. Qualitative and quantitative analyses of labiatenic acid, apigenin and buddleoside in Hyssopus officinalis by high-performance thin-layer chromatography. JPC-J Planar Chromat. 2021;34(1):45–53. https://doi.org/10.1007/s00764-021-00087-8.

    Article  CAS  Google Scholar 

  26. Qiyi H, Xiping C, Ding S, Yingshan C, Zhengyun J, Rui L, Sergei AE, Suqing Z. Development of a simple, rapid and high-throughput fluorescence polarization immunoassay for glycocholic acid in human urine. J Pharm Biomed Anal. 2018;158:431–7. https://doi.org/10.1016/j.jpba.2018.06.023.

    Article  CAS  Google Scholar 

  27. Ren L, Meng M, Wang P, Xu Z, Eremin SA, Zhao J, Yin Y, Xi R. Determination of sodium benzoate in food products by fluorescence polarization immunoassay. Talanta. 2014;121:136–43. https://doi.org/10.1016/j.talanta.2013.12.035.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Q, Haughey SA, Sun Y, Eremin SA, Li Z, Liu H, Xu Z, Shen Y, Lei. Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder. Anal Bioanal Chem. 2011;399(6):2275–84. https://doi.org/10.1007/s00216-010-4599-2.

    Article  CAS  PubMed  Google Scholar 

  29. Shim YS, Kim JC, Jeong SW. Simultaneous determination of piperine, capsaicin, and dihydrocapsaicin in Korean instant-noodle (Ramyun) soup base using high-performance liquid chromatography with ultraviolet detection. J AOAC Int. 2016;99(1):187–0192. https://doi.org/10.5740/jaoacint.15-0188.

    Article  CAS  PubMed  Google Scholar 

  30. Sun X, Zhao Q, Zha C, Zhang J, Zhou Z, Dong H, Yang Q, Guo Y, Zhao S. Competitive electrochemical immunosensor for detection of capsaicinoids in edible vegetable oil based on computer aided molecular modeling. J Electrochem Soc. 2022;169:057502. https://doi.org/10.1149/1945-7111/ac690c.

    Article  Google Scholar 

  31. Liu Z, Yu S, Xu S, Zhao B, Xu W. Ultrasensitive detection of capsaicin in oil for fast identification of illegal cooking oil by SERRS. ACS Omega. 2017;2(11):8401–6. https://doi.org/10.1021/acsomega.7b01457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dawan P, Satarpai T, Tuchinda P, Shiowatana J, Siripinyanond A. A simple analytical platform based on thin-layer chromatography coupled with paper-based analytical device for determination of total capsaicinoids in chilli samples. Talanta. 2017;162:460–5. https://doi.org/10.1016/j.talanta.2016.10.077.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from the National Natural Science Foundation of China (No. 32161133008, No. 31701681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingqing Yang.

Ethics declarations

Ethics approval

Approval not applicable.

Source of biological material

Capsaicinoid monoclonal antibody (CPC Ab-D8, 0.5 μg/mL) and capsaicinoid antigen (4-[(4-hydroxy-3-methoxybenzyl) amino]-4-oxobutanoic acid-BSA (bovine serum albumin) conjugates, BSA-hapten C, 5 mg/mL) were obtained from Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (Wuhan, China).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, M., Yang, Q. et al. A simple and rapid homogeneous fluorescence polarization immunoassay for rapid identification of gutter cooking oil by detecting capsaicinoids. Anal Bioanal Chem 414, 6127–6137 (2022). https://doi.org/10.1007/s00216-022-04177-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04177-2

Keywords

Navigation