Skip to main content
Log in

A novel colorimetric sensor array for real-time and on-site monitoring of meat freshness

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Food quality control is essential in industry and daily life. In this work, we developed a novel colorimetric sensor array composed of several pH-sensitive dyes for monitoring meat freshness. A color change in the sensor array was seen after exposure to volatile organic compounds (VOCs), and the images were captured for precise quantification of the VOCs. In conjunction with pattern recognition, meat freshness at different storage periods was readily discerned, revealing that the as-fabricated colorimetric sensor array possessed excellent discrimination ability. The linear range for quantitative analysis of volatiles related to meat spoilage was from 5 ppm to 100 ppm, with a limit of detection at the ppb level (S/N = 3). Furthermore, the testing results obtained by the sensor in assessing meat freshness were validated by a standard method for measuring the total volatile basic nitrogen (TVB-N). The sensing signals showed good agreement with the results obtained in TVB-N when measuring real food samples. The sensor also displayed good reproducibility (RSD < 5%) and long-term stability. The sensor was successfully used for on-site and real-time determination of volatiles emitted from rotting meat, demonstrating its potential application in monitoring the quality and safety of meat products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu T, Zhang W, Yuwono M, Zhang M, Su SW. A data-driven meat freshness monitoring and evaluation method using rapid centroid estimation and hidden Markov models. Sensor Actuat B-Chem. 2020;127868. https://doi.org/10.1016/j.snb.2020.127868.

  2. Ekmekcioglu C, Wallner P, Kundi M, Weisz U, Haas W, Hutter HP. Red meat, diseases, and healthy alternatives: A critical review. Crit Rev Food Sci Nutr. 2018;58(2):247–61. https://doi.org/10.1080/10408398.2016.1158148.

    Article  PubMed  Google Scholar 

  3. Gui M, Liu L, Wu R, Hu J, Wang S, Li P. Detection of New Quorum Sensing N-Acyl Homoserine Lactones From Aeromonas veronii. Front Microbiol. 2018;9:1712. https://doi.org/10.3389/fmicb.2018.01712.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang W, Feng X, Zhang D, Li B, Sun B, Tian H, et al. Analysis of volatile compounds in Chinese dry-cured hams by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry. Meat Sci. 2018;140:14–25. https://doi.org/10.1016/j.meatsci.2018.02.016.

    Article  CAS  PubMed  Google Scholar 

  5. Petricevic S, Marusic Radovcic N, Lukic K, Listes E, Medic H. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis. Meat Sci. 2018;137:217–427. https://doi.org/10.1016/j.meatsci.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  6. Argyri AA, Jarvis RM, Wedge D, Xu Y, Panagou EZ, Goodacre R, et al. A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control. 2013;29(2):461–70. https://doi.org/10.1016/j.foodcont.2012.05.040.

    Article  CAS  Google Scholar 

  7. Chae I, Lee D, Kim S, Thundat T. Electronic Nose for Recognition of Volatile Vapor Mixtures Using a Nanopore-Enhanced Opto-Calorimetric Spectroscopy. Anal Chem. 2015;87(14):7125–32. https://doi.org/10.1021/acs.analchem.5b00915.

    Article  CAS  PubMed  Google Scholar 

  8. Moudache M, Nerin C, Colon M, Zaidi F. Antioxidant effect of an innovative active plastic film containing olive leaves extract on fresh pork meat and its evaluation by Raman spectroscopy. Food Chem. 2017;229:98–103. https://doi.org/10.1016/j.foodchem.2017.02.023.

    Article  CAS  PubMed  Google Scholar 

  9. Lin J-M, Huang Y-Q, Liu Z-b, Lin C-Q, Ma X, Liu J-M. Design of an ultra-sensitive gold nanorod colorimetric sensor and its application based on formaldehyde reducing Ag+. RSC Adv. 2015;5(121):99944–50. https://doi.org/10.1039/c5ra16266a.

    Article  CAS  Google Scholar 

  10. Gao M, Li S, Lin Y, Geng Y, Ling X, Wang L, et al. Fluorescent Light-Up Detection of Amine Vapors Based on Aggregation-Induced Emission. ACS Sens. 2015;1(2):179–84. https://doi.org/10.1021/acssensors.5b00182.

    Article  CAS  Google Scholar 

  11. Huang XW, Zou XB, Shi JY, Li ZH, Zhao JW. Colorimetric Sensor Arrays Based on Chemo-Responsive Dyes for Food Odor Visualization. Trends Food Sci Technol. 2018;81:91–107. https://doi.org/10.1016/j.tifs.2018.09.001.

    Article  CAS  Google Scholar 

  12. Mma A, Nha C, Saaa C, Ol B. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci Technol. 2020;99:1–10. https://doi.org/10.1016/j.tifs.2020.02.028.

    Article  CAS  Google Scholar 

  13. Hou C, Li J, Huo D, Luo X, Dong J, Yang M, et al. A portable embedded toxic gas detection device based on a cross-responsive sensor array. Sens Sensor Actuat B-Chem. 2012;161(1):244–50. https://doi.org/10.1016/j.snb.2011.10.026.

    Article  CAS  Google Scholar 

  14. Li Z, Suslick KS. Portable Optoelectronic Nose for Monitoring Meat Freshness. ACS Sens. 2016;1(11):1330–5. https://doi.org/10.1021/acssensors.6b00492.

    Article  CAS  Google Scholar 

  15. Li Z, Li H, LaGasse MK, Suslick KS. Rapid Quantification of Trimethylamine. Anal Chem. 2016;88(11):5615–20. https://doi.org/10.1021/acs.analchem.6b01170.

    Article  CAS  PubMed  Google Scholar 

  16. Guo L, Wang T, Wu Z, Wang J, Wang M, Cui Z, et al. Portable Food-Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. Adv Mater. 2020;32(45):e2004805. https://doi.org/10.1002/adma.202004805.

    Article  CAS  PubMed  Google Scholar 

  17. Gao Z, Ye H, Tang D, Tao J, Habibi S, Minerick A, et al. Platinum-Decorated Gold Nanoparticles with Dual Functionalities for Ultrasensitive Colorimetric in Vitro Diagnostics. Nano Lett. 2017;17(9):5572–9. https://doi.org/10.1021/acs.nanolett.7b02385.

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Qin L, Zhou M, Lou Z, Wei H. Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells. Anal Chem. 2018;90(19):11696–702. https://doi.org/10.1021/acs.analchem.8b03374.

    Article  CAS  PubMed  Google Scholar 

  19. Zeng J, Li M, Liu A, Feng F, Zeng T, Duan W, et al. Au/AgI Dimeric Nanoparticles for Highly Selective and Sensitive Colorimetric Detection of Hydrogen Sulfide. Adv Funct Mater. 2018;28(26). https://doi.org/10.1002/adfm.201800515.

  20. Wang G, Cai Z, Dou X. Colorimetric logic design for rapid and precise discrimination of nitrate-based improvised explosives. Cell Rep Phys Sci. 2021;2(2). https://doi.org/10.1016/j.xcrp.2020.100317.

  21. Wang G, Li Y, Cai Z, Dou X. A Colorimetric Artificial Olfactory System for Airborne Improvised Explosive Identification. Adv Mater. 2020;32(14):e1907043. https://doi.org/10.1002/adma.201907043.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Sharpee TO. A Robust Feedforward Model of the Olfactory System. PLoS Comput Biol. 2016;12(4):e1004850. https://doi.org/10.1371/journal.pcbi.1004850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chiu SW, Tang KT. Towards a chemiresistive sensor-integrated electronic nose: a review. Sensors (Basel). 2013;13(10):14214–47. https://doi.org/10.3390/s131014214.

    Article  CAS  Google Scholar 

  24. Bushdid C, Magnasco MO, Vosshall LB, Keller A. Humans Can Discriminate More than 1 Trillion Olfactory Stimuli. Sci. 2014;343:1370–2. https://doi.org/10.1126/science.1249168.

    Article  CAS  Google Scholar 

  25. Pluskal T, Weng JK. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chem Soc Rev. 2018;47(5):1592–637. https://doi.org/10.1039/c7cs00411g.

    Article  CAS  PubMed  Google Scholar 

  26. Kida H, Fukutani Y, Mainland JD, de March CA, Vihani A, Li YR, et al. Vapor detection and discrimination with a panel of odorant receptors. Nat Commun. 2018;9(1):4556. https://doi.org/10.1038/s41467-018-06806-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guan B, Zhao J, Jin H, Lin H. Determination of Rice Storage Time with Colorimetric Sensor Array. Food Anal Methods. 2016;10(4):1054–62. https://doi.org/10.1007/s12161-016-0664-6.

    Article  Google Scholar 

  28. Lin H, Man ZX, Kang WC, Guan BB, Chen QS, Xue ZL. A novel colorimetric sensor array based on boron-dipyrromethene dyes for monitoring the storage time of rice. Food Chem. 2018;268:300–6. https://doi.org/10.1016/j.foodchem.2018.06.097.

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Chen K, Wang J, Wang Y, Tang Y, Gao X, et al. An on-package colorimetric sensing label based on a sol-gel matrix for fish freshness monitoring. Food Chem. 2020;307:125580. https://doi.org/10.1016/j.foodchem.2019.125580.

    Article  CAS  PubMed  Google Scholar 

  30. Liu B, Gurr PA, Qiao GG. Irreversible Spoilage Sensors for Protein-Based Food. ACS Sens. 2020;5(9):2903–8. https://doi.org/10.1021/acssensors.0c01211.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Y, Fu G, Zilberman Y, Ruan W, Ameri SK, Zhang YS, et al. Low cost smart phone diagnostics for food using paper-based colorimetric sensor arrays. Food Control. 2017;82:227–32. https://doi.org/10.1016/j.foodcont.2017.07.003.

    Article  CAS  Google Scholar 

  32. Salinas Y, Ros-Lis JV, Vivancos J-L, Martínez-Máñez R, Marcos MD, Aucejo S, et al. A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control. 2014;35(1):166–76. https://doi.org/10.1016/j.foodcont.2013.06.043.

    Article  Google Scholar 

  33. Sun S, Qian S, Zheng J, Li Z, Lin H. A colorimetric sensor array for the discrimination of Chinese liquors. Analyst. 2020;145(21):6968–73. https://doi.org/10.1039/d0an01496f.

    Article  CAS  PubMed  Google Scholar 

  34. Chen Q, Liu A, Zhao J, Ouyang Q, Sun Z, Huang L. Monitoring vinegar acetic fermentation using a colorimetric sensor array. Sensor Actuat B-Chem. 2013;183:608–16. https://doi.org/10.1016/j.snb.2013.04.033.

    Article  CAS  Google Scholar 

  35. Weston M, Kuchel RP, Ciftci M, Boyer C, Chandrawati R. A polydiacetylene-based colorimetric sensor as an active use-by date indicator for milk. J Colloid Interface Sci. 2020;572:31–8. https://doi.org/10.1016/j.jcis.2020.03.040.

    Article  CAS  PubMed  Google Scholar 

  36. Xiao-wei H, Xiao-bo Z, Ji-yong S, Zhi-hua L, Jie-wen Z. Colorimetric sensor arrays based on chemo-responsive dyes for food odor visualization. Trends Food Sci Technol. 2018;81:90–107. https://doi.org/10.1016/j.tifs.2018.09.001.

    Article  CAS  Google Scholar 

  37. Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev. 2019;119(1):231–92. https://doi.org/10.1021/acs.chemrev.8b00226.

    Article  CAS  PubMed  Google Scholar 

  38. Askim JR, Mahmoudi M, Suslick K. Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev. 2013;42(22):8649–82. https://doi.org/10.1039/c3cs60179j.

    Article  CAS  PubMed  Google Scholar 

  39. Chen HZ, Zhang M, Bhandari B, Yang CH. Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids. 2019;100:105438. https://doi.org/10.1016/j.foodhyd.2019.105438.

    Article  CAS  Google Scholar 

  40. Zhao S, Lei J, Huo D, Hou C, Luo X, Wu H, et al. A colorimetric detector for lung cancer related volatile organic compounds based on cross-response mechanism. Sensor Actuat B-Chem. 2017;256:543–52. https://doi.org/10.1016/j.snb.2017.10.091.

    Article  CAS  Google Scholar 

  41. Jon R, Askim Z, Li MK, LaGasse, et al. An optoelectronic nose for identification of explosives. Chem Sci. 2016;7:199–206. https://doi.org/10.1039/C5SC02632F.

    Article  Google Scholar 

  42. Bordbar MM, Tashkhourian J, Hemmateenejad B. Qualitative and quantitative analysis of toxic materials in adulterated fruit pickle samples by a colorimetric sensor array. Sensor Actuat B-Chem. 2018;257:783–91. https://doi.org/10.1016/j.snb.2017.11.010.

    Article  CAS  Google Scholar 

  43. Mitchell L, New EJ, Mahon CS. Macromolecular Optical Sensor Arrays. ACS Appl Polym Mater. 2021;3(2):506–30. https://doi.org/10.1021/acsapm.0c01003.

    Article  CAS  Google Scholar 

  44. Lee H, Kim MS, Lee WH, Cho BK. Determination of the total volatile basic nitrogen (TVB-N) content in pork meat using hyperspectral fluorescence imaging. Sensor Actuat B-Chem. 2018;259(APR):532–9. https://doi.org/10.1016/j.snb.2017.12.102.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key Program of the Natural Science Foundation of Shenzhen (JCYJ20200109113410174), the National Natural Science Foundation of China (81973280, 82173778), and Shenzhen Science and Technology Program (KQTD20170810105439418).

Author information

Authors and Affiliations

Authors

Contributions

Wengui Nie: Methodology, Formal analysis, Resources, Writing—original draft, Writing—review & editing. Yifei Chen: Formal analysis, Data curation, Methodology. Hua Zhang: Conceptualization, Methodology. Jinsen Liu: Software, Visualization. Zhengchun Peng: Validation, Supervision, Project administration, Writing—review & editing. Yingchun Li: Conceptualization, Validation, Investigation, Writing—review & editing, Funding acquisition.

Corresponding authors

Correspondence to Zhengchun Peng or Yingchun Li.

Ethics declarations

Competing of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

(MP4 2581 kb)

(MP4 6776 kb)

ESM 3

(DOCX 10733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, W., Chen, Y., Zhang, H. et al. A novel colorimetric sensor array for real-time and on-site monitoring of meat freshness. Anal Bioanal Chem 414, 6017–6027 (2022). https://doi.org/10.1007/s00216-022-04176-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04176-3

Keywords

Navigation