Skip to main content

Advertisement

Log in

Coding recognition of the dose–effect interdependence of small biomolecules encrypted on paired chromatographic-based microassay arrays

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The discovery of small biomolecules has suffered from the lack of a comprehensive framework to express the intrinsic correlation between bioactivity and the contribution from small molecules in complex samples with molecular and bioactivity diversity. Here, by mapping a sample’s 2D-HPTLC fingerprint to microplates, paired chromatographic-based microassay arrays are created, which can be used as quasi-chips to characterize multiple attributes of chromatographic components; as the array differential expression of the bioactivity and molecular attributes of irregular chromatographic spots for dose–effect interdependent encoding; and also as the automatic-collimated array mosaics of the multi-attributes of each component itself encrypted by its chromatographic fingerprint. Based on this homologous framework, we propose a correlating recognition strategy for small biomolecules through their self-consistent chromatographic behavior characteristics. In the approach, the small biomolecule recognition in diverse compounds is transformed into a constraint satisfaction problem, which is addressed through examining the dose–effect interdependence of the homologous 2D code pairs by an array matching algorithm, instead of preparing diverse compound monomers of complex test samples for identification item-by-item. Furthermore, considering the dose–effect interdependent 2D code pairs as links and the digital-specific quasimolecular ions as nodes, an extendable self-consistent framework that correlates mammalian cell phenotypic and target-based bioassays with small biomolecules is established. Therefore, the small molecule contributions and the correlations of bioactivities, as well as their pathways, can be comprehensively revealed, so as to improve the reliability and efficiency of screening. This strategy was successfully applied to galangal, and demonstrated the high-throughput digital preliminary screening of small biomolecules in a natural product.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8(6):531–41. https://doi.org/10.1038/nchem.2479.

    Article  CAS  PubMed  Google Scholar 

  2. Organization WH. Who traditional medicine strategy: 2014–2023. WHO, Geneva

  3. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19(5):299–310. https://doi.org/10.1038/nrg.2018.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weston AD, Hood L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res. 2004;3(2):179–96. https://doi.org/10.1021/pr0499693.

    Article  CAS  PubMed  Google Scholar 

  5. Schenone M, Dančík V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9(4):232–40. https://doi.org/10.1038/nchembio.1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–19. https://doi.org/10.1038/nrd3480.

    Article  CAS  PubMed  Google Scholar 

  7. Iwata H, Kojima R, Okuno Y. An in silico approach for integrating phenotypic and target-based approaches in drug discovery. Mol Inf. 2019;38:1900096. https://doi.org/10.1002/minf.201900096.

    Article  CAS  Google Scholar 

  8. Croston GE. The utility of target-based discovery. Expert Opin Drug Discov. 2017;12(5):427–9. https://doi.org/10.1080/17460441.2017.1308351.

    Article  PubMed  Google Scholar 

  9. Helgeland K, Jonsen J, Laland S, Lygren T, Rømcke O. Biological activity of a brownish-yellow pigment produced from vitamin B12 by Aerobacter aerogenes. Nature. 1963;199(4893):604–5. https://doi.org/10.1038/199604a0.

    Article  CAS  PubMed  Google Scholar 

  10. Bjorseth A, Eidsa G, Gether J, Landmark L, Moller M. Detection of mutagens in complex samples by the Salmonella assay applied directly on thin-layer chromatography plates. Science. 1982;215(4528):87–9. https://doi.org/10.1126/science.7031897.

    Article  CAS  PubMed  Google Scholar 

  11. Jamshidi-Aidji M, Morlock GE. From bioprofiling and characterization to bioquantification of natural antibiotics by direct bioautography linked to high-resolution mass spectrometry: exemplarily shown for Salvia miltiorrhiza root. Anal Chem. 2016;88(22):10979–86. https://doi.org/10.1021/acs.analchem.6b02648.

    Article  CAS  PubMed  Google Scholar 

  12. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, … Chen L (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem 128:115923. https://doi.org/10.1016/j.trac.2020.115923

  13. Ma H, Horiuchi KY. Chemical microarray: a new tool for drug screening and discovery. Drug Discov Today. 2006;11(13–14):661–8. https://doi.org/10.1016/j.drudis.2006.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rothbauer M, Wartmann D, Charwat V, Ertl P. Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv. 2015;33(6):948–61. https://doi.org/10.1016/j.biotechadv.2015.06.006.

    Article  PubMed  Google Scholar 

  15. Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2017;17(2):97–113. https://doi.org/10.1038/nrd.2017.232.

    Article  CAS  PubMed  Google Scholar 

  16. Janzen WP. Screening technologies for small molecule discovery: the state of the art. Chem Biol. 2014;21(9):1162–70. https://doi.org/10.1016/j.chembiol.2014.07.015.

    Article  CAS  PubMed  Google Scholar 

  17. Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2017;90(1):240–65. https://doi.org/10.1021/acs.analchem.7b04733.

    Article  CAS  PubMed  Google Scholar 

  18. Ferey J, Da Silva D, Lafite P, Daniellou R, Maunit B. TLC-UV hyphenated with MALDI-TOFMS for the screening of invertase substrates in plant extracts. Talanta. 2017;170:419–24. https://doi.org/10.1016/j.talanta.2017.04.040.

    Article  CAS  PubMed  Google Scholar 

  19. Galarce-Bustos O, Pavón-Pérez J, Henríquez-Aedo K, Aranda M. An improved method for a fast screening of α-glucosidase inhibitors in cherimoya fruit (Annona cherimola Mill.) applying effect-directed analysis via high-performance thin-layer chromatography-bioassay-mass spectrometry. J Chromatogr A. 2019;460415. https://doi.org/10.1016/j.chroma.2019.460415.

  20. Hood L, Galas D. The digital code of DNA. Nature. 2003;421(6921):444–8. https://doi.org/10.1038/nature01410.

    Article  CAS  PubMed  Google Scholar 

  21. Gellman SH. Introduction: molecular recognition. Chem Rev. 1997;97(5):1231–2. https://doi.org/10.1021/cr970328j.

    Article  CAS  PubMed  Google Scholar 

  22. Small C, Sousa D. Spatiotemporal evolution of COVID-19 infection and detection within night light networks: comparative analysis of USA and China. Appl Netw Sci. 2021;6:10. https://doi.org/10.1007/s41109-020-00345-4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levin N, Kyba CCM, Zhang Q, Miguel ASD, Elvidge CD. Remote sensing of night lights: a review and an outlook for the future. Remote Sens Environ. 2020;237(C):111443. https://doi.org/10.1016/j.rse.2019.111443.

  24. Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci. 2004;101(39):14036–9. https://doi.org/10.1073/pnas.0406115101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng Y, Li Y, Li J, Deng Y. A rapid, micro-scale preliminary screening method for active components in galangal with protective effect against hydrogen peroxide induced cell apoptosis through “thin layer chromatography” and “tetrazolium-based colorimetric assay” array correspondence. J Chromatogr A. 2015;1395:167–72. https://doi.org/10.1016/j.chroma.2015.03.062.

    Article  CAS  PubMed  Google Scholar 

  26. Wong SF, Low KH, Khor SM. Differential-based biosensor array for fluorescence-chemometric discrimination and the quantification of subtle chloropropanols by cross-reactive serum albumin scaffolding. Talanta. 2020;218: 121169. https://doi.org/10.1016/j.talanta.2020.121169.

    Article  CAS  PubMed  Google Scholar 

  27. Riccio G, Nuzzo G, Zazo G, Coppola D, Senese G, Romano L, Costantini M, Ruocco N, Bertolino M, Fontana A, Ianora A, Verde C, Giordano D, Lauritano C. Bioactivity screening of antarctic sponges reveals anticancer activity and potential cell death via ferroptosis by mycalols. Mar Drugs. 2021;19(8):459. https://doi.org/10.3390/md19080459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, … Stockwell BR. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12(7):497–503. https://doi.org/10.1038/nchembio.2079.

  29. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59. https://doi.org/10.1016/j.cell.2009.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen H, Zhang B, Xu H, Sun Y, Wu Q, Shen H, Liu Y. Microfluidic-based G-quadruplex ligand displacement assay for alkaloid anticancer drug screening. J Pharm Biomed Anal. 2017;134:333–9. https://doi.org/10.1016/j.jpba.2016.10.024.

    Article  CAS  PubMed  Google Scholar 

  31. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, … Plaxco KW. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci. 2010;107(24):10837–10841. https://doi.org/10.1073/pnas.100563210

  32. Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc. 2003;125(27):8102–3. https://doi.org/10.1021/ja034876s.

    Article  CAS  PubMed  Google Scholar 

  33. Geng Y, Peveler WJ, Rotello V. Array-based, “chemical nose” sensing in diagnostics and drug discovery. Angew Chem. 2018;131:2–14. https://doi.org/10.1002/ange.201809607.

    Article  Google Scholar 

  34. Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, … Tong W. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol. 2014;32(9):926–932. https://doi.org/10.1038/nbt.3001.

  35. Yoshioka N, Zangerl B, Phu J, Choi AYJ, Khuu SK, Masselos K, … Kalloniatis M. Consistency of structure-function correlation between spatially scaled visual field stimuli and in vivo OCT ganglion cell counts. Investig Opthalmol Vis Sci. 2018;59(5):1693. https://doi.org/10.1167/iovs.17-23683.

  36. Terstappen GC, Schlüpen C, Raggiaschi R, Gaviraghi G. Target deconvolution strategies in drug discovery. Nat Rev Drug Discov. 2007;6(11):891–903. https://doi.org/10.1038/nrd2410.

    Article  CAS  PubMed  Google Scholar 

  37. Han MA, Lee DH, Woo SM, Seo, BR, Min K, Kim S, … Kwon TK. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells. Sci Reports 2016;6(1):18642. https://doi.org/10.1038/srep18642.

  38. Phosrithong N, Ungwitayatorn J. Molecular docking study on anticancer activity of plant-derived natural products. Med Chem Res. 2009;19(8):817–35. https://doi.org/10.1007/s00044-009-9233-5.

    Article  CAS  Google Scholar 

  39. Bu X, Xiao G, Gu L, Zhang M. Chemical study of Alpinia officinarum. J Chin Med Mater. 2000;2:84–7.

    Google Scholar 

Download references

Acknowledgements

We thank Yu Zhong (Analysis Centre of Guangdong Medical University, China) for technical assistance during LC-MS analysis, Liubo Lan for help with the initial cell viability assay, and Ning Li (Affiliated Hospital of Guangdong Medical University, China) for providing the A549 and HepG2 cells.

Funding

This study was financially supported by the Bureau of Guangdong Traditional Chinese Medicine, China (No. 20141152 and No. 20181153).

Author information

Authors and Affiliations

Authors

Contributions

YD conceived the project, designed all the experiments in this study, and drafted this manuscript for publication. In addition, he performed all the experiments for the G-quadruplex ligand bioassay and consistency analysis of all the experimental data. ZL performed the cell viability assays and the LC–MS analysis, processed the related data, prepared some chromatographic-based microassay arrays, and created some of the CAD drawings. YC carried out the preliminary experiments for this study.

Corresponding author

Correspondence to Yifeng Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 266 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Lin, Z. & Cheng, Y. Coding recognition of the dose–effect interdependence of small biomolecules encrypted on paired chromatographic-based microassay arrays. Anal Bioanal Chem 414, 5991–6001 (2022). https://doi.org/10.1007/s00216-022-04162-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04162-9

Keywords