Skip to main content

Advertisement

Log in

Validated single urinary assay designed for exposomic multi-class biomarkers of common environmental exposures

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Epidemiological studies often call for analytical methods that use a small biospecimen volume to quantify trace level exposures to environmental chemical mixtures. Currently, as many as 150 polar metabolites of environmental chemicals have been found in urine. Therefore, we developed a multi-class method for quantitation of biomarkers in urine. A single sample preparation followed by three LC injections was optimized in a proof-of-approach for a multi-class method. The assay was validated to quantify 50 biomarkers of exposure in urine, belonging to 7 chemical classes and 16 sub-classes. The classes represent metabolites of 12 personal care and consumer product chemicals (PCPs), 5 polycyclic aromatic hydrocarbons (PAHs), 5 organophosphate flame retardants (OPFRs), 18 pesticides, 5 volatile organic compounds (VOCs), 4 tobacco alkaloids, and 1 drug of abuse. Human urine (0.2 mL) was spiked with isotope-labeled internal standards, enzymatically deconjugated, extracted by solid-phase extraction, and analyzed using high-performance liquid chromatography-tandem mass spectrometry. The methanol eluate from the cleanup was split in half and the first half analyzed for PCPs, PAH, and OPFR on a Betasil C18 column; and pesticides and VOC on a Hypersil Gold AQ column. The second half was analyzed for tobacco smoke metabolites and a drug of abuse on a Synergi Polar RP column. Limits of detection ranged from 0.01 to 1.0 ng/mL of urine, with the majority ≤0.5 ng/mL (42/50). Analytical precision, estimated as relative standard deviation of intra- and inter-batch uncertainty, variabilities, was <20%. Extraction recoveries ranged from 83 to 109%. Results from the optimized multi-class method were qualified in formal international proficiency testing programs. Further method customization options were explored and method expansion was demonstrated by inclusion of up to 101 analytes of endo- and exogenous chemicals. This exposome-scale assay is being used for population studies with savings of assay costs and biospecimens, providing both quantitative results and the discovery of unexpected exposures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fourth National Report on Human Exposure to Environmental Chemicals. Volume two: NHANES 2011-2016. Updated Tables, March 2021. https://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Volume2_Mar2021-508.pdf. 2021. Accessed 10th Feb 2022.

  2. Krowech G, Hoover S, Plummer L, Sandy M, Zeise L, Solomon G. Identifying chemical groups for biomonitoring. Environ Health Perspect. 2016;124(12):A219–a226. https://doi.org/10.1289/ehp537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Calafat AM, Ye X, Silva MJ, Kuklenyik Z, Needham LL. Human exposure assessment to environmental chemicals using biomonitoring. Int J Androl. 2006;29(1):166–71; discussion 181-165. https://doi.org/10.1111/j.1365-2605.2005.00570.x.

    Article  CAS  PubMed  Google Scholar 

  4. Tsatsakis AM, Docea AO, Tsitsimpikou C. New challenges in risk assessment of chemicals when simulating real exposure scenarios; simultaneous multi-chemicals’ low dose exposure. Food and Chemical Toxicology. 2016;96:174–6.

    Article  CAS  Google Scholar 

  5. Chung MK, Kannan K, Louis GM, Patel CJ. Toward capturing the exposome: exposure biomarker variability and coexposure patterns in the shared environment. Environmental Science & Technology. 2018;52(15):8801–10. https://doi.org/10.1021/acs.est.8b01467.

    Article  CAS  Google Scholar 

  6. Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA, Patti GJ, Rappaport SM, Shaughnessy DT, Vrijheid M, Barr DB. Biomonitoring in the era of the exposome. Environ Health Perspect. 2017;125(4):502–10. https://doi.org/10.1289/ehp474.

    Article  CAS  PubMed  Google Scholar 

  7. Yusa V, Ye X, Calafat AM. Methods for the determination of biomarkers of exposure to emerging pollutants in human specimens. Trends Analyt Chem. 2012;38:129–42. https://doi.org/10.1016/j.trac.2012.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vorkamp K, Castaño A, Antignac J-P, Boada LD, Cequier E, Covaci A, Esteban López M, Haug LS, Kasper-Sonnenberg M, Koch HM, Pérez Luzardo O, Osīte A, Rambaud L, Pinorini M-T, Sabbioni G, Thomsen C. Biomarkers, matrices and analytical methods targeting human exposure to chemicals selected for a European human biomonitoring initiative. Environment International. 2021;146:106082. https://doi.org/10.1016/j.envint.2020.106082.

    Article  CAS  PubMed  Google Scholar 

  9. Bisphenol A and other environmental phenols and parabens in urine NHANES 2009-2010. https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/EPH_F_met_phenols_parabens.pdf. 2011. Accessed 10th Feb 2022.

  10. Andra SS, Charisiadis P, Arora M, van Vliet-Ostaptchouk JV, Makris KC. Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A. Environ Int. 2015;85:352–79. https://doi.org/10.1016/j.envint.2015.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andra SS, Austin C, Yang J, Patel D, Arora M. Recent advances in simultaneous analysis of bisphenol A and its conjugates in human matrices: exposure biomarker perspectives. Sci Total Environ. 2016;572:770–81. https://doi.org/10.1016/j.scitotenv.2016.07.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. OH-PAH in urine NHANES 2011-2012. https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/pahs_g_met.pdf. 2013. Accessed 10th Feb 2022.

  13. Organophosphate insecticides—dialkyl phosphate metabolites & flame retardants NHANES 2011-2012. https://wwwn.cdc.gov/nchs/data/nhanes/2011-2012/labmethods/OPD_G_MET.pdf. 2019. Accessed 10th Feb 2022.

  14. Urinary pyrethroids, herbicides, and OP metabolites in urine NHANES 2009–2010. https://wwwn.cdc.gov/nchs/data/nhanes/2009-2010/labmethods/UPHOPM_F_met.pdf. 2013. Accessed 10th Feb 2022.

  15. Metabolites of phthalates and phthalate alternatives NHANES 2015-2016. https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/PHTHTE_I_MET.pdf. 2018. Accessed 10th Feb 2022.

  16. Volatile organic compounds metabolites NHANES 2011-2012. https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/UVOC_G_MET_VOC_Metabolites.pdf. 2016. Accessed 10th Feb 2022.

  17. Cotinine and hydroxycotinine (total) NHANES 2013-2014. https://wwwn.cdc.gov/nchs/data/nhanes/2013-2014/labmethods/UCOT_I_UCOTS_I_Urinary_Cotinine_and_Hydroxycotinine_MET.pdf. 2018. Accessed 10th Feb 2022.

  18. Heffernan AL, Aylward LL, Toms L-ML, Sly PD, Macleod M, Mueller JF. Pooled biological specimens for human biomonitoring of environmental chemicals: opportunities and limitations. Journal of Exposure Science & Environmental Epidemiology. 2014;24(3):225–32. https://doi.org/10.1038/jes.2013.76.

    Article  CAS  Google Scholar 

  19. Zhu H, Chinthakindi S, Kannan K. A method for the analysis of 121 multi-class environmental chemicals in urine by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2021;1646:462146. https://doi.org/10.1016/j.chroma.2021.462146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin M, Ma S, Yu Y, Li G, Mai B, An T. Simultaneous determination of multiple classes of phenolic compounds in human urine: insight into metabolic biomarkers of occupational exposure to E-waste. Environmental Science & Technology Letters. 2020;7(5):323–9. https://doi.org/10.1021/acs.estlett.0c00187.

    Article  CAS  Google Scholar 

  21. Jayatilaka NK, Restrepo P, Davis Z, Vidal M, Calafat AM, Ospina M. Quantification of 16 urinary biomarkers of exposure to flame retardants, plasticizers, and organophosphate insecticides for biomonitoring studies. Chemosphere. 2019;235:481–91. https://doi.org/10.1016/j.chemosphere.2019.06.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Preindl K, Braun D, Aichinger G, Sieri S, Fang M, Marko D, Warth B. A generic liquid chromatography-tandem mass spectrometry exposome method for the determination of xenoestrogens in biological matrices. Anal Chem. 2019;91(17):11334–42. https://doi.org/10.1021/acs.analchem.9b02446.

    Article  CAS  PubMed  Google Scholar 

  23. Asimakopoulos AG, Xue J, De Carvalho BP, Iyer A, Abualnaja KO, Yaghmoor SS, Kumosani TA, Kannan K. Urinary biomarkers of exposure to 57 xenobiotics and its association with oxidative stress in a population in Jeddah, Saudi Arabia. Environ Res. 2016;150:573–81. https://doi.org/10.1016/j.envres.2015.11.029.

    Article  CAS  PubMed  Google Scholar 

  24. Dewalque L, Pirard C, Dubois N, Charlier C. Simultaneous determination of some phthalate metabolites, parabens and benzophenone-3 in urine by ultra high pressure liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;949-950:37–47. https://doi.org/10.1016/j.jchromb.2014.01.002.

    Article  CAS  PubMed  Google Scholar 

  25. Chen M, Tao L, Collins EM, Austin C, Lu C. Simultaneous determination of multiple phthalate metabolites and bisphenol-A in human urine by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;904:73–80. https://doi.org/10.1016/j.jchromb.2012.07.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heffernan AL, Thompson K, Eaglesham G, Vijayasarathy S, Mueller JF, Sly PD, Gomez MJ. Rapid, automated online SPE-LC-QTRAP-MS/MS method for the simultaneous analysis of 14 phthalate metabolites and 5 bisphenol analogues in human urine. Talanta. 2016;151:224–33. https://doi.org/10.1016/j.talanta.2016.01.037.

    Article  CAS  PubMed  Google Scholar 

  27. Mínguez-Alarcón L, Messerlian C, Bellavia A, Gaskins AJ, Chiu YH, Ford JB, Azevedo AR, Petrozza JC, Calafat AM, Hauser R, Williams PL. Urinary concentrations of bisphenol A, parabens and phthalate metabolite mixtures in relation to reproductive success among women undergoing in vitro fertilization. Environ Int. 2019;126:355–62. https://doi.org/10.1016/j.envint.2019.02.025.

    Article  CAS  PubMed  Google Scholar 

  28. Jayatilaka NK, Restrepo P, Williams L, Ospina M, Valentin-Blasini L, Calafat AM. Quantification of three chlorinated dialkyl phosphates, diphenyl phosphate, 2,3,4,5-tetrabromobenzoic acid, and four other organophosphates in human urine by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2017;409(5):1323–32. https://doi.org/10.1007/s00216-016-0061-4.

    Article  CAS  PubMed  Google Scholar 

  29. Reemtsma T, Lingott J, Roegler S. Determination of 14 monoalkyl phosphates, dialkyl phosphates and dialkyl thiophosphates by LC-MS/MS in human urinary samples. Sci Total Environ. 2011;409(10):1990–3. https://doi.org/10.1016/j.scitotenv.2011.01.032.

    Article  CAS  PubMed  Google Scholar 

  30. Ao J, Zhang Q, Tang W, Yuan T, Zhang J. A simple, rapid and sensitive method for the simultaneous determination of eighteen environmental phenols in human urine. Chemosphere. 2021;278:130494. https://doi.org/10.1016/j.chemosphere.2021.130494.

    Article  CAS  PubMed  Google Scholar 

  31. Silveira RS, Rocha BA, Rodrigues JL, Barbosa F Jr. Rapid, sensitive and simultaneous determination of 16 endocrine-disrupting chemicals (parabens, benzophenones, bisphenols, and triclocarban) in human urine based on microextraction by packed sorbent combined with liquid chromatography tandem mass spectrometry (MEPS-LC-MS/MS). Chemosphere. 2020;240:124951. https://doi.org/10.1016/j.chemosphere.2019.124951.

    Article  CAS  PubMed  Google Scholar 

  32. Baker SE, Serafim AB, Morales-Agudelo P, Vidal M, Calafat AM, Ospina M. Quantification of DEET and neonicotinoid pesticide biomarkers in human urine by online solid-phase extraction high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2019;411(3):669–78. https://doi.org/10.1007/s00216-018-1481-0.

    Article  CAS  PubMed  Google Scholar 

  33. Behniwal PK, She J. Development of HPLC-MS/MS method for the simultaneous determination of metabolites of organophosphate pesticides, synthetic pyrethroids, herbicides and DEET in human urine. International Journal of Environmental Analytical Chemistry. 2017;97(6):548–62. https://doi.org/10.1080/03067319.2017.1325881.

    Article  CAS  Google Scholar 

  34. Asimakopoulos AG, Wang L, Thomaidis NS, Kannan K. A multi-class bioanalytical methodology for the determination of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, triclosan, and triclocarban in human urine by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2014;1324:141–8. https://doi.org/10.1016/j.chroma.2013.11.031.

    Article  CAS  PubMed  Google Scholar 

  35. Davis MD, Wade EL, Restrepo PR, Roman-Esteva W, Bravo R, Kuklenyik P, Calafat AM. Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine. Journal of Chromatography B. 2013;929:18–26.

    Article  CAS  Google Scholar 

  36. Olsson AO, Baker SE, Nguyen JV, Romanoff LC, Udunka SO, Walker RD, Flemmen KL, Barr DB. A liquid chromatography–tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and deet in human urine. Anal Chem. 2004;76(9):2453–61. https://doi.org/10.1021/ac0355404.

    Article  CAS  PubMed  Google Scholar 

  37. Vela-Soria F, Ballesteros O, Zafra-Gómez A, Ballesteros L, Navalón A (2014) A multiclass method for the analysis of endocrine disrupting chemicals in human urine samples. Sample treatment by dispersive liquid–liquid microextraction. Talanta 129:209-218. doi:https://doi.org/https://doi.org/10.1016/j.talanta.2014.05.016

  38. Dwivedi P, Zhou X, Powell TG, Calafat AM, Ye X. Impact of enzymatic hydrolysis on the quantification of total urinary concentrations of chemical biomarkers. Chemosphere. 2018;199:256–62. https://doi.org/10.1016/j.chemosphere.2018.01.177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye X, Kuklenyik Z, Needham LL, Calafat AM. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem. 2005;77(16):5407–13. https://doi.org/10.1021/ac050390d.

    Article  CAS  PubMed  Google Scholar 

  40. Gavin QW, Ramage RT, Waldman JM, She J. Development of HPLC-MS/MS method for the simultaneous determination of environmental phenols in human urine. International Journal of Environmental Analytical Chemistry. 2014;94(2):168–82. https://doi.org/10.1080/03067319.2013.814123.

    Article  CAS  Google Scholar 

  41. Zhou X, Kramer JP, Calafat AM, Ye X. Automated on-line column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol A, bisphenol F, bisphenol S, and 11 other phenols in urine. Journal of Chromatography B. 2014;944:152–6.

    Article  CAS  Google Scholar 

  42. Yao Y, Shao Y, Zhan M, Zou X, Qu W, Zhou Y. Rapid and sensitive determination of nine bisphenol analogues, three amphenicol antibiotics, and six phthalate metabolites in human urine samples using UHPLC-MS/MS. Anal Bioanal Chem. 2018;410(16):3871–83. https://doi.org/10.1007/s00216-018-1062-2.

    Article  CAS  PubMed  Google Scholar 

  43. Grignon C, Dupuis A, Albouy-Llaty M, Condylis M, Barrier L, Carato P, Brunet B, Migeot V, Venisse N. Validation of a probe for assessing deconjugation of glucuronide and sulfate phase II metabolites assayed through LC-MS/MS in biological matrices. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1061-1062:72–8. https://doi.org/10.1016/j.jchromb.2017.07.013.

    Article  CAS  PubMed  Google Scholar 

  44. Kannan K, Stathis A, Mazzella MJ, Andra SS, Barr DB, Hecht SS, Merrill LS, Galusha AL, Parsons PJ. Quality assurance and harmonization for targeted biomonitoring measurements of environmental organic chemicals across the Children’s Health Exposure Analysis Resource laboratory network. International Journal of Hygiene and Environmental Health. 2021;234:113741. https://doi.org/10.1016/j.ijheh.2021.113741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaivosaari S, Finel M, Koskinen M. N-glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases. Xenobiotica. 2011;41(8):652–69.

    Article  CAS  Google Scholar 

  46. Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chemical research in toxicology. 2002;15(10):1281–7.

    Article  Google Scholar 

  47. Sasso AF, Pirow R, Andra SS, Church R, Nachman RM, Linke S, Kapraun DF, Schurman SH, Arora M, Thayer KA, Bucher JR, Birnbaum LS. Pharmacokinetics of bisphenol A in humans following dermal administration. Environ Int. 2020;144:106031. https://doi.org/10.1016/j.envint.2020.106031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. International Journal of Toxicology. 2004;23(5):301–33. https://doi.org/10.1080/10915810490517063.

    Article  CAS  PubMed  Google Scholar 

  49. Hou R, Xu Y, Wang Z. Review of OPFRs in animals and humans: absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere. 2016;153:78–90.

    Article  CAS  Google Scholar 

  50. Barr DB, Olsson AO, Bravo R, Needham LL. Comprehensive approach for biological monitoring of pesticides in urine using HPLC-MS/MS and GC-MS/MS. In: Martínez Vidal JL, Frenich AG, editors. Pesticide protocols. Totowa, NJ: Humana Press; 2006. p. 61–78. https://doi.org/10.1385/1-59259-929-X:061.

    Chapter  Google Scholar 

  51. Wittassek M, Angerer J. Phthalates: metabolism and exposure. International journal of andrology. 2008;31(2):131–8.

    Article  CAS  Google Scholar 

  52. Benowitz NL, Jacob P, Fong I, Gupta S. Nicotine metabolic profile in man: comparison of cigarette smoking and transdermal nicotine. Journal of Pharmacology and Experimental Therapeutics. 1994;268(1):296–303.

    CAS  PubMed  Google Scholar 

  53. Smith HS. Opioid metabolism. Mayo Clinic proceedings. 2009;84(7):613–24. https://doi.org/10.1016/S0025-6196(11)60750-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huestis MA. Human cannabinoid pharmacokinetics. Chemistry & biodiversity. 2007;4(8):1770–804. https://doi.org/10.1002/cbdv.200790152.

    Article  CAS  Google Scholar 

  55. De Rooij M, Jan NM, Commandeur Nico PE, Vermeulen B. Mercapturic acids as biomarkers of exposure to electrophilic chemicals:applications to environmental and industrial chemicals. Biomarkers: biochemical indicators of exposure, response, and susceptibility to chemicals. 1998;3(4-5):239–303. https://doi.org/10.1080/135475098231101.

    Article  Google Scholar 

  56. Aylward LL, Morgan MK, Arbuckle TE, Barr DB, Burns CJ, Alexander BH, Hays SM. Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using biomonitoring equivalents. Environmental Health Perspectives. 2010;118(2):177–81. https://doi.org/10.1289/ehp.0900970.

    Article  CAS  PubMed  Google Scholar 

  57. Harada KH, Tanaka K, Sakamoto H, Imanaka M, Niisoe T, Hitomi T, Kobayashi H, Okuda H, Inoue S, Kusakawa K. Biological monitoring of human exposure to neonicotinoids using urine samples, and neonicotinoid excretion kinetics. PloS one. 2016;11(1):e0146335.

    Article  Google Scholar 

  58. Bravo R, Caltabiano LM, Weerasekera G, Whitehead RD, Fernandez C, Needham LL, Bradman A, Barr DB. Measurement of dialkyl phosphate metabolites of organophosphorus pesticides in human urine using lyophilization with gas chromatography-tandem mass spectrometry and isotope dilution quantification. Journal of Exposure Science & Environmental Epidemiology. 2004;14(3):249–59. https://doi.org/10.1038/sj.jea.7500322.

    Article  CAS  Google Scholar 

  59. Calafat AM, Koch HM. BPA and risk assessment. Lancet Diabetes Endocrinol. 2020;8(4):269–70. https://doi.org/10.1016/s2213-8587(20)30070-x.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schantz MM, Benner BA Jr, Heckert NA, Sander LC, Sharpless KE, Vander Pol SS, Vasquez Y, Villegas M, Wise SA, Alwis KU, Blount BC, Calafat AM, Li Z, Silva MJ, Ye X, Gaudreau É, Patterson DG Jr, Sjödin A. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds. Anal Bioanal Chem. 2015;407(11):2945–54. https://doi.org/10.1007/s00216-014-8441-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koch HM, Lessmann F, Swan SH, Hauser R, Kolossa-Gehring M, Frederiksen H, Andersson AM, Thomsen C, Sakhi AK, Bornehag CG, Mueller JF, Rudel RA, Braun JM, Harth V, Brüning T. Analyzing terephthalate metabolites in human urine as biomarkers of exposure: importance of selection of metabolites and deconjugation enzyme. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1100-1101:91–2. https://doi.org/10.1016/j.jchromb.2018.09.035.

    Article  CAS  PubMed  Google Scholar 

  62. Blount BC, Milgram KE, Silva MJ, Malek NA, Reidy JA, Needham LL, Brock JW. Quantitative detection of eight phthalate metabolites in human urine using HPLC−APCI-MS/MS. Analytical chemistry. 2000;72(17):4127–34.

    Article  CAS  Google Scholar 

  63. Dias N, Poole C. Mechanistic study of the sorption properties of OASIS® HLB and its use in solid-phase extraction. Chromatographia. 2002;56(5):269–75.

    Article  CAS  Google Scholar 

  64. Franke C, Westerholm H, Niessner R. Solid-phase extraction (SPE) of the fluorescence tracers uranine and sulphorhodamine B. Water Research. 1997;31(10):2633–7.

    Article  CAS  Google Scholar 

  65. Scheidweiler KB, Shakleya DM, Huestis MA. Simultaneous quantification of nicotine, cotinine, trans-3′-hydroxycotinine, norcotinine and mecamylamine in human urine by liquid chromatography-tandem mass spectrometry. Clin Chim Acta. 2012;413(11-12):978–84. https://doi.org/10.1016/j.cca.2012.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Onyemauwa F, Rappaport SM, Sobus JR, Gajdošová D, Wu Ra, Waidyanatha S (2009) Using liquid chromatography–tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. Journal of Chromatography B 877 (11):1117-1125. doi:https://doi.org/https://doi.org/10.1016/j.jchromb.2009.02.067

  67. Zhang Y, Wang Q, Cheng J, Zhang J, Xu J, Ren Y (2015) Comprehensive profiling of mercapturic acid metabolites from dietary acrylamide as short-term exposure biomarkers for evaluation of toxicokinetics in rats and daily internal exposure in humans using isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry. Analytica Chimica Acta 894:54-64. doi:https://doi.org/https://doi.org/10.1016/j.aca.2015.08.033

  68. Adams S, Guest J, Dickinson M, Fussell RJ, Beck J, Schoutsen F. Development and validation of ion chromatography–tandem mass spectrometry-based method for the multiresidue determination of polar ionic pesticides in food. Journal of Agricultural and Food Chemistry. 2017;65(34):7294–304. https://doi.org/10.1021/acs.jafc.7b00476.

    Article  CAS  PubMed  Google Scholar 

  69. Karthikraj R, Kannan K. Widespread occurrence of glyphosate in urine from pet dogs and cats in New York State, USA. Science of The Total Environment. 2019;659:790–5. https://doi.org/10.1016/j.scitotenv.2018.12.454.

    Article  CAS  PubMed  Google Scholar 

  70. Calafat AM, Kato K, Hubbard K, Jia T, Botelho JC, Wong L-Y. Legacy and alternative per- and polyfluoroalkyl substances in the U.S. general population: paired serum-urine data from the 2013–2014 National Health and Nutrition Examination Survey. Environment International. 2019;131:105048. https://doi.org/10.1016/j.envint.2019.105048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stein CR, Wolff MS, Calafat AM, Kato K, Engel SM. Comparison of polyfluoroalkyl compound concentrations in maternal serum and amniotic fluid: a pilot study. Reprod Toxicol. 2012;34(3):312–6. https://doi.org/10.1016/j.reprotox.2012.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kato K, Kalathil AA, Patel AM, Ye X, Calafat AM. Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction–liquid chromatography–tandem mass spectrometry. Chemosphere. 2018;209:338–45. https://doi.org/10.1016/j.chemosphere.2018.06.085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Asimakopoulos AG, Wang L, Thomaidis NS, Kannan K. A multi-class bioanalytical methodology for the determination of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, triclosan, and triclocarban in human urine by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A. 2014;1324:141–8. https://doi.org/10.1016/j.chroma.2013.11.031.

    Article  CAS  PubMed  Google Scholar 

  74. Meeker JD, Barr DB, Serdar B, Rappaport SM, Hauser R. Utility of urinary 1-naphthol and 2-naphthol levels to assess environmental carbaryl and naphthalene exposure in an epidemiology study. Journal of Exposure Science & Environmental Epidemiology. 2007;17(4):314–20. https://doi.org/10.1038/sj.jes.7500502.

    Article  CAS  Google Scholar 

  75. Wang L-M, Luo D, Li X, Hu L-Q, Chen J-X, Tu Z-Z, Sun B, Chen H-G, Liu L, Yu M, Li Y-P, Pan A, Messerlian C, Mei S-R, Wang Y-X. Temporal variability of organophosphate flame retardant metabolites in spot, first morning, and 24-h urine samples among healthy adults. Environmental Research. 2021;196:110373. https://doi.org/10.1016/j.envres.2020.110373.

    Article  CAS  PubMed  Google Scholar 

  76. Personne S, Marcelo P, Pilard S, Baltora-Rosset S, Corona A, Robidel F, Lecomte A, Brochot C, Bach V, Zeman F. Determination of maternal and foetal distribution of cis- and trans-permethrin isomers and their metabolites in pregnant rats by liquid chromatography tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem. 2019;411(30):8043–52. https://doi.org/10.1007/s00216-019-02157-7.

    Article  CAS  PubMed  Google Scholar 

  77. Alwis KU, Blount BC, Britt AS, Patel D, Ashley DL. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal Chim Acta. 2012;750:152–60. https://doi.org/10.1016/j.aca.2012.04.009.

    Article  CAS  PubMed  Google Scholar 

  78. de Castro A, Concheiro M, Shakleya DM, Huestis MA. Simultaneous quantification of methadone, cocaine, opiates, and metabolites in human placenta by liquid chromatography-mass spectrometry. Journal of analytical toxicology. 2009;33(5):243–52. https://doi.org/10.1093/jat/33.5.243.

    Article  PubMed  Google Scholar 

  79. Kotandeniya D, Carmella SG, Ming X, Murphy SE, Hecht SS. Combined analysis of the tobacco metabolites cotinine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine. Analytical Chemistry. 2015;87(3):1514–7. https://doi.org/10.1021/ac504047j.

    Article  CAS  PubMed  Google Scholar 

  80. Jacob P, Goniewicz ML, Havel CM, Schick SF, Benowitz NL. Nicotelline: a proposed biomarker and environmental tracer for particulate matter derived from tobacco smoke. Chemical Research in Toxicology. 2013;26(11):1615–31. https://doi.org/10.1021/tx400094y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jacob P, St Helen G, Yu L, Nardone N, Havel C, Cheung P, Benowitz NL. Biomarkers of exposure for dual use of electronic cigarettes and combustible cigarettes: nicotelline, NNAL, and total nicotine equivalents. Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco. 2020;22(7):1107–13. https://doi.org/10.1093/ntr/ntz235.

    Article  CAS  Google Scholar 

  82. Benowitz NL, Bernert JT, Foulds J, Hecht SS, Jacob P, Jarvis MJ, Joseph A, Oncken C, Piper ME. Biochemical verification of tobacco use and abstinence: 2019 update. Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco. 2020;22(7):1086–97. https://doi.org/10.1093/ntr/ntz132.

    Article  Google Scholar 

  83. Vaccher V, Lopez ME, Castaño A, Mol H, Haji-Abbas-Zarrabi K, Bury D, Koch HM, Dvorakova D, Hajslova J, Nübler S, Kaur Sakhi A, Thomsen C, Vorkamp K, Göen T, Antignac J-P. European interlaboratory comparison investigations (ICI) and external quality assurance schemes (EQUAS) for the analysis of bisphenol A, S and F in human urine: results from the HBM4EU project. Environmental Research. 2022;210:112933. https://doi.org/10.1016/j.envres.2022.112933.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Dana B. Barr (Professor, Rollins School of Public Health, Emory University, Atlanta, GA, USA) for consultation for the umbelliferone validation steps and for DAPs analysis.

Funding

The Mount Sinai CHEAR/HHEAR laboratory hub acknowledges funding for this study from NIH/NIEHS: U2C ES026561 and P30 ES023515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syam S. Andra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Source of biological material

The authors declare obtaining informed consent of the anonymous volunteers for providing urine samples to prepare the urine QC pool in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagani, R., Pulivarthi, D., Patel, D. et al. Validated single urinary assay designed for exposomic multi-class biomarkers of common environmental exposures. Anal Bioanal Chem 414, 5943–5966 (2022). https://doi.org/10.1007/s00216-022-04159-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04159-4

Keywords

Navigation