Skip to main content
Log in

Method development and application to sediments for multi-residue analysis of organic contaminants using gas chromatography-tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method for the determination of four classes of potentially toxic substances (PTSs) was developed and applied in marine sediments, including (i) polycyclic aromatic hydrocarbons (PAHs), (ii) polychlorinated biphenyls (PCBs), (iii) polybrominated diphenyl ethers (PBDEs), and (iv) organochlorinated pesticides (OCPs). The method is based on ultrasonic extraction with a mixture of dichloromethane:methanol (9:1 v/v) and gas chromatography coupled with tandem mass spectrometry analysis (GC–MS/MS) in multiple reaction monitoring (MRM) mode. A total of 89 compounds were identified using two precursor-product ion standards for each analyte. The method detection limit (MDL; 0.001–0.055 ng g−1 dw) and method quantification limit (MQL; 0.002–0.184 ng g−1 dw) are below the usual thresholds of pollution adopted by international sediment quality guidelines. The method proved to be selective, sensitive, accurate, and linear, with the advantage of reducing sample handling time and consumable expenses (solvent, adsorbents). The developed method was successfully applied to surface sediments of Sepetiba Bay, Rio de Janeiro State, Brazil. Total concentrations of PAH (29.20–209.5 ng g−1 dw), PCB (0.06–2.16 ng g−1 dw), OCP (0.03–0.33 ng g−1 dw), and PBDE (0.06–0.21 ng g−1 dw) represent a baseline for these compounds and revealed mild to low levels of contamination in comparison to other coastal bays in SE Brazil. By using the proposed method, we expect this preliminary dataset can be expanded and include other similar coastal systems from developing countries marked by scarcity of information about levels, risk assessment, and specific sediment quality guidelines encompassing multiple classes of regulated and emerging organic contaminants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Talsness CE. Overview of toxicological aspects of polybrominated diphenyl ethers: a flame-retardant additive in several consumer products. Environ Res. 2008;108:158–67. https://doi.org/10.1016/j.envres.2008.08.008.

    Article  CAS  PubMed  Google Scholar 

  2. UNEP. Stockholm convention: master list of actions on the reduction and/or elimination of the releases of persistent organic pollutants. Geneva, Switz  2003; 21:295–316

  3. EC. Directive 2002/95/ec of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J Eur Comm L. 2003;19–23. Available at https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:037:0019:0023:EN:PDF.

  4. Buchman MF. NOAA screening quick reference tables, NOAA OR&R Report 08-1. Seattle WA: Office of Response and Restoriation Division, National Oceanic and AtmosphericAdministration; 2008. p 34.

  5. CONAMA n° 454. de 1 de Novembro de 2012, do Concelho Nacional de Meio Ambiente - CONAMA; Estabelece as diretrizes gerais e os procedimentos referenciais para o gerenciamento do material a ser dragado em águas sob jurisdição nacional. 2012;7:1–25. Available at https://www.icmbio.gov.br/cepsul/images/stories/legislacao/Resolucao/2012/res_conama_454_2012_materialserdragadoemaguasjurisdicionaisbrasileiras.pdf.

  6. Ackermann-Liebrich U, Autrup H, Bard D, Calow P, Dekant W, Gard A, Linders J. Critical review of any new evidence on the hazard profile, health effects, and human exposure to fluoride and the fluoridating agents of drinking water. Eur Comm Sci Comm Heal Environ Risks. 2011. Available at https://ec.europa.eu/health/scientific_committees/environmental_risks/docs/scher_o_139.pdf.

  7. Pizzini S, Morabito E, Gregoris E, Vecchiato M, Corami F, Piazza R, Gambaro A. Occurrence and source apportionment of organic pollutants in deep sediment cores of the Venice Lagoon. Mar Pollut Bull. 2021;164:112053. https://doi.org/10.1016/j.marpolbul.2021.112053.

    Article  CAS  PubMed  Google Scholar 

  8. Bersuder P, Smith AJ, Hynes C, Warford L, Barber JL, Losada S, Limpenny C, Khamis AS, Abdulla KH, Le Quesne WJF, Lyons BP. Baseline survey of marine sediments collected from the Kingdom of Bahrain: PAHs, PCBs, organochlorine pesticides, perfluoroalkyl substances, dioxins, brominated flame retardants and metal contamination. Mar Pollut Bull. 2020;161:111734. https://doi.org/10.1016/j.marpolbul.2020.111734.

    Article  CAS  PubMed  Google Scholar 

  9. Castañeda-Chávez M del R, Lango-Reynoso F, Navarrete-Rodríguez G. Hexachlorocyclohexanes, cyclodiene, methoxychlor, and heptachlor in sediment of the Alvarado lagoon system in Veracruz, Mexico. Sustain 2018;10:1–14. https://doi.org/10.3390/su10010076

  10. Cheng JO, Ko FC. Occurrence of PBDEs in surface sediments of metropolitan rivers: sources, distribution pattern, and risk assessment. Sci Total Environ. 2018;637–638:1578–85. https://doi.org/10.1016/j.scitotenv.2018.05.075.

    Article  CAS  PubMed  Google Scholar 

  11. Li H, Jiang W, Pan Y, Li F, Wang C, Tian H. Occurrence and partition of organochlorine pesticides (OCPs) in water, sediment, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China. Mar Pollut Bull. 2021;162:111906. https://doi.org/10.1016/j.marpolbul.2020.111906.

    Article  CAS  PubMed  Google Scholar 

  12. Deng Z, Li X, Chen C, Zhang N, Zhou H, Wang H, Han X, Zhang C. Distribution characteristics and environmental fate of PCBs in marine sediments at different latitudinal regions: insights from congener profiles. Mar Pollut Bull. 2020;161:111710. https://doi.org/10.1016/j.marpolbul.2020.111710.

    Article  CAS  PubMed  Google Scholar 

  13. Megson D, Benoit NB, Sandau CD, Chaudhuri SR, Long T, Coulthard E, Johnson GW. Evaluation of the effectiveness of different indicator PCBs to estimating total PCB concentrations in environmental investigations. Chemosphere. 2019;237:124429. https://doi.org/10.1016/j.chemosphere.2019.124429.

    Article  CAS  PubMed  Google Scholar 

  14. Sotão Neto BMT, Combi T, Taniguchi S, Albergaria-Barbosa ACR, Ramos RB, Figueira RCL, Montone RC. Persistent organic pollutants (POPs) and personal care products (PCPs) in the surface sediments of a large tropical bay (Todos os Santos Bay, Brazil). Mar Pollut Bull. 2020;161. https://doi.org/10.1016/j.marpolbul.2020.111818

  15. Gormley Á, Pollard S, Rocks S. Guidelines for environmental risk assessment and management - Green Leaves III. Risk Manag. 2011;84. Available at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69450/pb13670-green-leaves-iii-1111071.pdf.

  16. Chiaradia MC, Collins CH, Jardim ICSF. The state of the art of chromatography associated with the tandem mass spectrometry for toxic compound analyses in food. Quim Nova. 2008;31:623–36. https://doi.org/10.1590/s0100-40422008000300030.

    Article  CAS  Google Scholar 

  17. Gonçalves RA, Oliveira DF, Rezende CE, Almeida P, de Lacerda LD, da Gama BAP, Godoy JM. Spatial and temporal effects of decommissioning a zinc smelter on the sediment quality of an estuary system: Sepetiba Bay, Rio de Janeiro, Brazil. J Braz Chem Soc. 2020;31:683–93. https://doi.org/10.21577/0103-5053.20190232.

    Article  CAS  Google Scholar 

  18. Rodrigues SK, Machado W, Guerra JV, Geraldes M, Morales S, Vinzón SB. Changes in Cd and Zn distribution in sediments after closure of an electroplating industry, Sepetiba Bay. Brazil Mar Pollut Bull. 2020;161:111758. https://doi.org/10.1016/j.marpolbul.2020.111758.

    Article  CAS  PubMed  Google Scholar 

  19. Galvao P, Henkelmann B, Longo R, Dorneles PR, Torres JPM, Malm O, Schramm KW. Partition of organochlorine concentrations among suspended solids, sediments and brown mussel Perna perna, in tropical bays. Chemosphere. 2014;114:9–15. https://doi.org/10.1016/j.chemosphere.2014.04.008.

    Article  CAS  PubMed  Google Scholar 

  20. Pinheiro PPO, Massone CG, Carreira RS. Distribution, sources and toxicity potential of hydrocarbons in harbor sediments: a regional assessment in SE Brazil. Mar Pollut Bull. 2017;120:6–17. https://doi.org/10.1016/j.marpolbul.2017.04.049.

    Article  CAS  PubMed  Google Scholar 

  21. Wagener A de LR, Farias C de O, Molina FF, Scofield A de L. Hidrocarbonetos em sedimentos da Bacia de Campos. In: Falcão APC, Wagener AR, Carreira R, editors. Quimica Ambiental. Elsevier Editora Ltda. 2017;277–312. https://doi.org/10.1016/B978-85-352-7563-6.50017-X.

  22. EPA 3550c. Ultrasonic extraction. US - Environmental Protection Agency. 2007;245. Available at https://www.epa.gov/sites/default/files/2015-12/documents/3550c.pdf.

  23. EPA 3630C. Silica gel cleanup. US Environment Protection Agency. 1996;1–15. Available at https://www.epa.gov/sites/default/files/2015-12/documents/3630c.pdf.

  24. Wylie PL, Meng C. A method for the trace analysis of 175 pesticides using the Agilent triple quadrupole GC/MS/MS application note. Agil Technol Inc. 2009;2–13. Available at https://www.agilent.com/cs/library/applications/5990-3578EN.pdf.

  25. Stoll GC, da Silva CR, Massone CG. Polychlorinated biphenyls (PCBs) in water: method development and application to river samples from a populated tropical urban area. Anal Bioanal Chem. 2020;412:2477–86. https://doi.org/10.1007/s00216-020-02468-0.

    Article  CAS  PubMed  Google Scholar 

  26. Anderson KA, Szelewski MJ, Wilson G, Quimby BD, Hoffman PD. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses. J Chromatogr A. 2015;1419:89–98. https://doi.org/10.1016/j.chroma.2015.09.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoffmann E, Stroobant V. Mass spectrometry Mass spectrometry. 3rd ed. Chichester: John Wiley & Sons Ltd; 2007. British Library.

  28. AOAC International. Appendix F: guidelines for standard method performance requirements. AOAC Off. Methods Anal. 2016;2–9. Available at http://www.eoma.aoac.org/app_f.pdf.

  29. INMETRO (2016) Guidance in validation of analytical methods (in Portuguese). Inst Nac Metrol Qual e Tecnol 31

  30. Ribani M, Grespan Bottoli CB, Collins CH, Fontes Jardim ICS, Costa Melo LF. Validação em métodos cromatográficos e eletroforéticos. Quim Nova. 2004;27:771–80. https://doi.org/10.1590/S0100-40422004000500017.

    Article  CAS  Google Scholar 

  31. Wenzl T, Haedrich J, Schaechtele A, Robouch P, Stroka J. Guidance document on the estimation of LOD and LOQ for measurements in the field of contaminants in feed and food. Luxembourg: JCR Science and Policy Reports; 2016.

    Google Scholar 

  32. Araújo DF, Peres LGM, Yepez S, Mulholland DS, Machado W, Tonhá M, Garnier J. Assessing man-induced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data. Comptes Rendus - Geosci. 2017;349:290–8. https://doi.org/10.1016/j.crte.2017.09.007.

    Article  Google Scholar 

  33. Araújo DF, Boaventura GR, Machado W, Viers J, Weiss D, Patchineelam SR, Ruiz I, Rodrigues APC, Babinski M, Dantas E. Tracing of anthropogenic zinc sources in coastal environments using stable isotope composition. Chem Geol. 2017;449:226–35. https://doi.org/10.1016/j.chemgeo.2016.12.004.

    Article  CAS  Google Scholar 

  34. Cárdenas-Soracá DM, Tucca FI, Mardones-Peña CA, Barra-Ríos RO. Development of an analytical methodology for the determination of organochlorine pesticides by ethylene-vinyl acetate passive samplers in marine surface waters based on ultrasound-assisted solvent extraction followed with headspace solid-phase microextrac. J Chromatogr A. 2019;1605. https://doi.org/10.1016/j.chroma.2019.06.062

  35. Chu S, Hong C. Retention indexes for temperature-programmed gas chromatography of polychlorinated biphenyls. Anal Chem. 2004;76:5486–97. https://doi.org/10.1021/ac049526i.

    Article  CAS  PubMed  Google Scholar 

  36. Wang D, Cai Z, Jiang G, Wong MH, Wong WK. Gas chromatography/ion trap mass spectrometry applied for the determination of polybrominated diphenyl ethers in soil. Rapid Commun Mass Spectrom. 2005;19:83–9. https://doi.org/10.1002/rcm.1745.

    Article  CAS  PubMed  Google Scholar 

  37. Raina R, Hall P. Comparison of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry with electron ionization and negative-ion chemical ionization for analyses of pesticides at trace levels in atmospheric samples. Anal Chem Insights. 2008;2008:111–25. https://doi.org/10.4137/aci.s1005.

    Article  Google Scholar 

  38. Ikonomou MG, Rayne S. Chromatographic and ionization properties of polybrominated diphenyl ethers using GC/high-resolution MS with metastable atom bombardment and electron impact ionization. Anal Chem. 2002;74:5263–72. https://doi.org/10.1021/ac020191j.

    Article  CAS  PubMed  Google Scholar 

  39. Riu A, Zalko D, Debrauwer L. Study of polybrominated diphenyl ethers using both positive and negative atmospheric pressure photoionization and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:2133–42. https://doi.org/10.1002/rcm.2557.

    Article  CAS  PubMed  Google Scholar 

  40. COUNCIL REGULATION (EC) No 1257/96 of 20 June 1996 concerning humanitarian aid. Official Journal L 163 , 02/07/1996 P. 0001 - 0006. Current consolidated version: 26/07/2019. Available at https://eur-lex.europa.eu/eli/reg/1996/1257/oj.

  41. Agência Nacional de Vigilância Sanitária. ANVISA. Resolução, RE n.899 de 29 de M de 2003. Guia para validação de métodos analíticos e bioanalíticos. 2003. Available at https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0899_29_05_2003.html.

  42. Zencak Z, Borgen A, Reth M, Oehme M. Evaluation of four mass spectrometric methods for the gas chromatographic analysis of polychlorinated n-alkanes. J Chromatogr A. 2005;1067:295–301. https://doi.org/10.1016/j.chroma.2004.09.098.

    Article  CAS  PubMed  Google Scholar 

  43. Bet R, Bícego MC, Martins CC. Sedimentary hydrocarbons and sterols in a South Atlantic estuarine/shallow continental shelf transitional environment under oil terminal and grain port influences. Mar Pollut Bull. 2015;95:183–94. https://doi.org/10.1016/j.marpolbul.2015.04.024.

    Article  CAS  PubMed  Google Scholar 

  44. Rizzi J, Taniguchi S, Martins CC. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in sediments from an urban- and industrial-impacted subtropical estuary (Babitonga Bay, Brazil). Mar Pollut Bull. 2017;119:390–5. https://doi.org/10.1016/j.marpolbul.2017.03.032.

    Article  CAS  PubMed  Google Scholar 

  45. Macdonald DD. Approach to the assessment of sediment quality in Florida Coastal Waters. Assessment. 1994;1:126.

    Google Scholar 

  46. Canadian Council of Ministers of the Environment. Canadian sediment quality guidelines for the protection of aquatic life: summary tables. 2001. Available at https://ccme.ca/en/summary-table.

  47. With AN, Henrich R, Netzband A. Assessment criteria for dredged material with special focus on the North Sea region. 2011;1–36. Available at https://www.sednet.org/download/Dredged_Material_Criteria_North_Sea_0611.pdf.

  48. Klosterhaus SL, Stapleton HM, La Guardia MJ, Greig DJ. Brominated and chlorinated flame retardants in San Francisco Bay sediments and wildlife. Environ Int. 2012;47:56–65. https://doi.org/10.1016/j.envint.2012.06.005.

    Article  CAS  PubMed  Google Scholar 

  49. Moon HB, Choi M, Yu J, Jung RH, Choi HG. Contamination and potential sources of polybrominated diphenyl ethers (PBDEs) in water and sediment from the artificial Lake Shihwa, Korea. Chemosphere. 2012;88:837–43. https://doi.org/10.1016/j.chemosphere.2012.03.091.

    Article  CAS  PubMed  Google Scholar 

  50. Cunha C de L d. N, Rosman PCC, Ferreira AP, Carlos do Nascimento Monteiro T. Hydrodynamics and water quality models applied to Sepetiba Bay. Cont Shelf Res. 2006;26:1940–1953. https://doi.org/10.1016/j.csr.2006.06.010

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. RSC thanks the partial support provided by the CNPq grant n. 312697/2021–0. We also thank the authors of Gonçalves et al. [17] for providing the sediment samples for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos German Massone.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gripp, L., da Silva Carreira, R., Moreira, D. et al. Method development and application to sediments for multi-residue analysis of organic contaminants using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 414, 5845–5855 (2022). https://doi.org/10.1007/s00216-022-04148-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04148-7

Keywords

Navigation