Tundo GR, Sbardella D, Ciaccio C, Grasso G, Gioia M, Coletta A, et al. Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Crit Rev Biochem Mol Biol. 2017;52(5):554–82.
CAS
Article
Google Scholar
Sousa L, Guarda M, Meneses MJ, Macedo MP, Vicente MH. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J Pathol. 2021;255(4):346–61.
CAS
Article
Google Scholar
Adamek RN, Suire CN, Stokes RW, Brizuela MK, Cohen SM, Leissring MA. Hydroxypyridinethione inhibitors of human insulin-degrading enzyme. ChemMedChem. 2021;16(11):1776–88.
Article
Google Scholar
Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A. 2003;100(7):4162–7.
CAS
Article
Google Scholar
Costes S, Butler PC. Insulin-degrading enzyme inhibition, a novel therapy for type 2 diabetes? Cell Metab. 2014;20(2):201–3.
CAS
Article
Google Scholar
Grasso G, Lanza V, Malgieri G, Fattorusso R, Pietropaolo A, Rizzarelli E, et al. The insulin degrading enzyme activates ubiquitin and promotes the formation of K48 and K63 diubiquitin. Chem Commun (Camb). 2015;51(86):15724–7.
CAS
Article
Google Scholar
Tundo GR, Sbardella D, Ciaccio C, Grasso G, Gioia M, Coletta A, et al. Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Crit Rev Biochem Mol Biol. 2017;52(5):554–82.
CAS
Article
Google Scholar
Bellia F, Lanza V, Ahmed IMM, Garcia-Vinuales S, Veiss E, Arizzi M, et al. Site directed mutagenesis of insulin-degrading enzyme allows singling out the molecular basis of peptidase versus E1-like activity: the role of metal ions†. Metallomics. 2019;11(2):278–81.
CAS
Article
Google Scholar
Leissring MA. Insulin-degrading enzyme: paradoxes and possibilities Cells. 2021;10(9):2445.
CAS
PubMed
Google Scholar
Grasso G, Bush AI, D’Agata R, Rizzarelli E, Spoto G. Enzyme solid-state support assays: a surface plasmon resonance and mass spectrometry coupled study of immobilized insulin degrading enzyme. Eur Biophys J. 2009;38(4):407–14.
CAS
Article
Google Scholar
Tundo GR, Di Muzio E, Ciaccio C, Sbardella D, Di Pierro D, Polticelli F, et al. Multiple allosteric sites are involved in the modulation of insulin-degrading-enzyme activity by somatostatin. FEBS J. 2016;283(20):3755–70.
CAS
Article
Google Scholar
McCord LA, Liang WG, Dowdell E, Kalas V, Hoey RJ, Koide A, et al. Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme. Proc Natl Acad Sci U S A. 2013;110(34):13827–32.
CAS
Article
Google Scholar
Song ES, Rodgers DW, Hersh LB. Mixed dimers of insulin-degrading enzyme reveal a Cis activation mechanism. J Biol Chem. 2011;286(16):13852–8.
CAS
Article
Google Scholar
Song ES, Rodgers DW, Hersh LB. A monomeric variant of insulin degrading enzyme (IDE) loses its regulatory properties. PLoS ONE. 2010;5(3):e9719.
Article
Google Scholar
Prinz H. Hill coefficients, dose–response curves and allosteric mechanisms. J Chem Biol. 2009;3(1):37–44.
Article
Google Scholar
Bellelli A, Caglioti E. On the measurement of cooperativity and the physico-chemical meaning of the Hill coefficient. Curr Protein Pept Sci. 2019;20(9):861–72.
CAS
Article
Google Scholar
Camberos MC, Pérez AA, Udrisar DP, Wanderley MI, Cresto JC. ATP inhibits insulin-degrading enzyme activity. Exp Biol Med (Maywood). 2001;226(4):334–41.
CAS
Article
Google Scholar
Hulse RE, Ralat LA, Tang WJ. Structure, function, and regulation of insulin-degrading enzyme. Vitam Horm. 2009;80:635–48.
CAS
Article
Google Scholar
Horovitz A, Mondal T. Discriminating between concerted and sequential allosteric mechanisms by comparing equilibrium and kinetic Hill coefficients. J Phys Chem B. 2021;125(1):70–3.
CAS
Article
Google Scholar
Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials. 2007;28(15):2380–92.
CAS
Article
Google Scholar
Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, et al. Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE *. J Biol Chem. 2007;282(35):25453–63.
CAS
Article
Google Scholar
Grasso G, Rizzarelli E, Spoto G. The proteolytic activity of insulin-degrading enzyme: a mass spectrometry study. J Mass Spectrom. 2009;44(5):735–41.
CAS
Article
Google Scholar
Noinaj N, Bhasin SK, Song ES, Scoggin KE, Juliano MA, Juliano L, et al. Identification of the allosteric regulatory site of insulysin. PLoS ONE. 2011;6(6):e20864.
CAS
Article
Google Scholar
da Cruz CHB, Seabra G. Molecular dynamics simulations reveal a novel mechanism for ATP inhibition of insulin degrading enzyme. J Chem Inf Model. 2014;54(5):1380–90.
Article
Google Scholar
Caruso G, Benatti C, Musso N, Fresta CG, Fidilio A, Spampinato G, et al. Carnosine protects macrophages against the toxicity of Aβ1-42 oligomers by decreasing oxidative stress. Biomedicines. 2021;9(5):477.
CAS
Article
Google Scholar
Aloisi A, Barca A, Romano A, Guerrieri S, Storelli C, Rinaldi R, et al. Anti-aggregating effect of the naturally occurring dipeptide carnosine on aβ1-42 fibril formation. PLoS ONE. 2013;8(7):e68159.
CAS
Article
Google Scholar
Distefano A, Caruso G, Oliveri V, Bellia F, Sbardella D, Zingale GA, et al. Neuroprotective effect of carnosine is mediated by insulin-degrading enzyme. ACS ChemNeurosci [Internet]. 2022 Apr 26 [cited 2022 Apr 27]; Available from: https://doi.org/10.1021/acschemneuro.2c00201https://doi.org/10.1021/acschemneuro.2c00201
González-Casimiro CM, Merino B, Casanueva-Álvarez E, Postigo-Casado T, Cámara-Torres P, Fernández-Díaz CM, et al. Modulation of insulin sensitivity by insulin-degrading enzyme. Biomedicines. 2021;9(1):86.
Article
Google Scholar
Nyborg JK, Peersen OB. That zincing feeling: the effects of EDTA on the behaviour of zinc-binding transcriptional regulators. Biochem J. 2004;381(Pt 3):E3.
CAS
Article
Google Scholar
Ralat LA, Guo Q, Ren M, Funke T, Dickey DM, Potter LR, et al. Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response. J Biol Chem. 2011;286(6):4670–9.
CAS
Article
Google Scholar
HirlekarSchmid A, Stanca SE, Thakur MS, Thampi KR, Raman SC. Site-directed antibody immobilization on gold substrate for surface plasmon resonance sensors. Sens Actuators, B Chem. 2006;113(1):297–303.
CAS
Article
Google Scholar
Kishore D, Kundu S, Kayastha AM. Thermal, chemical and pH induced denaturation of a multimeric β-galactosidase reveals multiple unfolding pathways. PLoS ONE. 2012;7(11):e50380.
CAS
Article
Google Scholar
Löfås S, Johnsson B. A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J Chem Soc, Chem Commun. 1990;21:1526–8.
Article
Google Scholar
Lee CH, Jin ES, Lee JH, Hwang ET. Immobilization and stabilization of enzyme in biomineralized calcium carbonate microspheres. Front Bioeng Biotechnol. 2020;8:553591.
Article
Google Scholar
Hrtska SCL, Kemp MM, Muñoz EM, Azizad O, Banerjee M, Raposo C, et al. Investigation of the mechanism of binding between internalin B and heparin using surface plasmon resonance. Biochemistry. 2007;46(10):2697–706.
CAS
Article
Google Scholar
Tang Y, Zeng X, Liang J. Surface plasmon resonance: an introduction to a surface spectroscopy technique. J Chem Educ. 2010;87(7):742–6.
CAS
Article
Google Scholar
Robinson PK. Enzymes: principles and biotechnological applications. Essays Biochem. 2015;15(59):1–41.
Article
Google Scholar
Merz M, Appel D, Berends P, Rabe S, Blank I, Stressler T, et al. Batch-to-batch variation and storage stability of the commercial peptidase preparation Flavourzyme in respect of key enzyme activities and its influence on process reproducibility. Eur Food Res Technol. 2016;242(7):1005–12.
CAS
Article
Google Scholar