Skip to main content

BODIPY-based fluorescent chemosensor for phosgene detection: confocal imaging of nasal mucosa and lung samples from mouse exposed to phosgene

Abstract

The improper use of phosgene, either as a chemical warfare agent or a leak during chemical production, causes significant risks to human life and property. Therefore, it is particularly important to develop a rapid and highly selective method for the detection of phosgene. In this article, a highly selective fluorescent sensor ONB with a BODIPY unit as a fluorophore and o-aminophenol as a reactive site was constructed for the selective and rapid detection of phosgene in solution. The ONB-containing nanofibers were sprayed onto a non-woven fabric by electrostatic spinning and cut into test films, which can be used well for the detection of gaseous phosgene. While, there were no reported bio-imaging applications for phosgene detection. In this work, nasal mucosa and lung samples from the mice exposed to gaseous phosgene after dropping the ONB solution through the nasal cavity achieved bio-imaging applications successfully.

Graphical abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Chauhan S, D’Cruz R, Faruqi S, Singh KK, Varma S, Singh M, Karthik V. Chemical warfare agents. Environ Toxicol Pharmacol. 2008;26:113–22.

    CAS  Article  Google Scholar 

  2. Chen L, Jiang D, Xia J. A scheme of hazardous chemical identification for transportation incidents. J Hazard Mater. 1997;56:117–36.

    CAS  Article  Google Scholar 

  3. Esposito GG, Lillian D, Podolak GE, Tuggle RM. Determination of phosgene in air by gas chromatography and infrared spectrophotometry. Anal Chem. 1977;49:1774–8.

    CAS  Article  Google Scholar 

  4. Diller WF, Med H. Medical phosgene problems and their possible solution. J Occup Med. 1978;20:189–93.

    CAS  Article  Google Scholar 

  5. Noort D, Hulst AG, Fidder A, van Gurp RA, de Jong Leo PA, Benschop HP. In vitro adduct formation of phosgene with albumin and hemoglobin in human blood. Chem Res Toxicol. 2000;13:719–26.

    CAS  Article  Google Scholar 

  6. Wang S, Li C, Song Q. Fluorescent chemosensor for dual-channel discrimination between phosgene and triphosgene. Anal Chem. 2019;91:5690–7.

    CAS  Article  Google Scholar 

  7. Tan J, Li Z, Lu Z, Chang R, Sun Z, You J. Recent progress in the development of chemodosimeters for fluorescence visualization of phosgene. Dyes Pigm. 2021;193: 109540.

    CAS  Article  Google Scholar 

  8. Zhang H, Rudkevich DM. A FRET approach to phosgene detection. Chem Commun. 2007;12:1238–9.

    Article  Google Scholar 

  9. Zhou X, Zeng Y, Li C, Wu X, Yoon J. A fluorescent sensor for dual-channel discrimination between phosgene and a nerve-gas mimic. Angew Chem Int Ed. 2016;55:4729–33.

    CAS  Article  Google Scholar 

  10. Xia H, Xu X, Song Q. BODIPY-based fluorescent sensor for the recognization of phosgene in solutions and in gas phase. Anal Chem. 2017;89:4192–7.

    CAS  Article  Google Scholar 

  11. Hu Q, Duan C, Wu J, Su D, Zeng L, Sheng R. Colorimetric and ratiometric chemosensor for visual detection of gaseous phosgene based on anthracene carboxyimide membrane. Anal Chem. 2018;90:8686–91.

    CAS  Article  Google Scholar 

  12. Chen T, Jiang L, Hou J, Wang W, Zeng L, Bao G. A portable chromogenic and fluorogenic membrane sensor for ultrasensitive, specific and instantaneous visualizing of lethal phosgene. J Mater Chem A. 2020;8:24695–702.

    CAS  Article  Google Scholar 

  13. Ni J, Qian D, Sun R, Qin C, Ge J. Construction of a ratiometric phosgene probe by chromophore formation from auxochrome. Talanta. 2022;236:122826.

    CAS  Article  Google Scholar 

  14. Kim T-I, Hwang B, Bouffard J, Kim Y. Instantaneous colorimetric and fluorogenic detection of phosgene with a meso-oxime-BODIPY. Anal Chem. 2017;89:12837–42.

    CAS  Article  Google Scholar 

  15. Paul S, Ghosh P, Roy P. A coumarin based fluorescent chemodosimeter for phosgene gas detection instantaneously in solution and the gas phase. New J Chem. 2020;44:5784–91.

    CAS  Article  Google Scholar 

  16. Ma B, Wang X, Gao S, Qi L, Xu Y, Yang J, Zuo G. Iridium(III) complex-based phosphorescent probe for rapid, specific, and sensitive detection of phosgene. Dyes Pigments. 2020;177:108279.

    CAS  Article  Google Scholar 

  17. Du M, Huo B, Liu J, Li M, Shen A, Bai X, Lai Y, Fang L, Yang Y. A turn-on fluorescent probe based on Si-rhodamine for sensitive and selective detection of phosgene in solution and in the gas phase. J Mater Chem C. 2018;6:10472–9.

    CAS  Article  Google Scholar 

  18. Gangopadhyay A, Ali SS, Mahapatra AK. A powerful turn-on fluorescent probe for phosgene: a primary amide strategically attached to an anthracene fluorophore. ChemistrySelect. 2019;4:8968–72.

    CAS  Article  Google Scholar 

  19. Hu Y, Zhou X, Jung H, Nam SJ, Kim MH, Yoon J. Colorimetric and fluorescent detecting phosgene by a second-generation chemosensor. Anal Chem. 2018;90:3382–6.

    CAS  Article  Google Scholar 

  20. Kundu P, Hwang KC. Rational design of fluorescent phosgene sensors. Anal Chem. 2012;84:4594–720.

    CAS  Article  Google Scholar 

  21. Wei X, Fu Y, Xue M, Song Q. Synthesis of oxadiazolones with hydrazides: the mechanism and the sensing application as sensitive, rapid, and visual fluorescent sensors for phosgene. Org Lett. 2019;21:9497–501.

    CAS  Article  Google Scholar 

  22. Leen V, Yuan P, Wang L, Boens N, Dehaen W. Synthesis of Meso-Halogenated BODIPYs and Access to Meso-Substituted Analogues. Org Lett. 2012;14:6150–3.

    CAS  Article  Google Scholar 

  23. Hu M, Kang W, Cheng B, Li Z, Zhao Y, Li L. Sensitive and fast optical HCl gas sensor using a nanoporous fiber membrane consisting of poly(lactic acid) doped with tetraphenylporphyrin. Microchim Acta. 2016;183:1713–20.

    CAS  Article  Google Scholar 

  24. Jo S, Kim J, Noh J, Kim D, Jang G, Lee N, Lee E, Lee TS. Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant. ACS Appl Mater Interfaces. 2014;6:22884–93.

    CAS  Article  Google Scholar 

  25. Crosby GA, Demas JN. Measurement of photoluminescence quantum yields. J Phys Chem. 1971;75:991–1024.

    CAS  Article  Google Scholar 

  26. Wang SL, Zhang CL, Song QH. Selectively instant-response nanofibers with a fluorescent chemosensor toward phosgene in gas phase. J Mater Chem C. 2019;7:1510–7.

    CAS  Article  Google Scholar 

  27. Bai L, Feng W, Feng G. An ultrasensitive fluorescent probe for phosgene detection in solution and in air. Dyes Pigments. 2019;163:483–8.

    CAS  Article  Google Scholar 

  28. Dziemidowicz K, Sang Q, Wu J, Zhang Z, Zhou F, Lagaron JM, Mo X, Parker GJM, Yu DG, Zhu LM, Williams GR. Electrospinning for healthcare: recent advancements. J Mater Chem B. 2021;9:939–51.

    CAS  Article  Google Scholar 

  29. Long Y, Chen H, Yang Y, Wang H, Yang Y, Li N, Li K, Pei J, Liu F. Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor. Macromolecules. 2009;42:6501–9.

    CAS  Article  Google Scholar 

  30. Zhang Y, Li S, Pan G, Yang H, Qile M, Chen J, Song Q, Yan D. Stretchable nanofibrous membranes for colorimetric/fluorometric HCl sensing: Highly sensitive charge-transfer excited state. Sens Actuators B. 2018;254:785–94.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by Xinxiang City Foundation (NO. GG2021009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Cheng Xia.

Ethics declarations

Ethical approval

The study was approved by the Committee of Xinxiang Medical University.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5234 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, YY., Sun, TQ., Yu, MM. et al. BODIPY-based fluorescent chemosensor for phosgene detection: confocal imaging of nasal mucosa and lung samples from mouse exposed to phosgene. Anal Bioanal Chem 414, 4953–4962 (2022). https://doi.org/10.1007/s00216-022-04120-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04120-5

Keywords

  • Phosgene
  • BODIPY
  • Electrostatic spinning
  • Non-woven fabric
  • Biological imaging