Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol. 2001;67(4):1494–502. https://doi.org/10.1128/AEM.67.4.1494-1502.2001.
CAS
Article
PubMed
PubMed Central
Google Scholar
Guidi LR, Santos FA, Ribeiro ACSR, Fernandes C, Silva LHM, Gloria MBA. Quinolones and tetracyclines in aquaculture fish by a simple and rapid LC-MS/MS method. Food Chem. 2018;245:1232–8. https://doi.org/10.1016/j.foodchem.2017.11.094.
CAS
Article
PubMed
Google Scholar
Wang S, Yong W, Liu J, Zhang L, Chen Q, Dong Y. Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey. Biosens Bioelectron. 2014;57:192–8. https://doi.org/10.1016/j.bios.2014.02.032.
CAS
Article
PubMed
Google Scholar
Tong C, Xiang G. Sensitive determination of norfloxacin by the fluorescence probe of terbium (III)- sodium dodecylbenzene sulfonate and its luminescence mechanism. J Fluoresc. 2006;16(6):831–7. https://doi.org/10.1007/s10895-006-0107-7.
CAS
Article
PubMed
Google Scholar
Chen Z, Qian S, Chen J, Cai J, Wu S, Cai Z. Protein-templated gold nanoclusters based sensor for off–on detection of ciprofloxacin with a high selectivity. Talanta. 2012;94:240–5. https://doi.org/10.1016/j.talanta.2012.03.033.
CAS
Article
PubMed
Google Scholar
Faridbod F, Jamali A, Ganjali MR, Hosseini M, Norouzi P. A novel cobalt-sensitive fluorescent chemosensor based on ligand capped CdS quantum dots. J Fluoresc. 2015;25(3):613–9. https://doi.org/10.1007/s10895-015-1544-y.
CAS
Article
PubMed
Google Scholar
Jamali A, Tehrani AA, Shemirani F, Morsali A. Lanthanide metal–organic frameworks as selective microporous materials for adsorption of heavy metal ions. Dalton Trans. 2016;45(22):9193–200. https://doi.org/10.1039/c6dt00782a.
CAS
Article
PubMed
Google Scholar
Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal Bioanal Chem. 2007;389(3):951–8. https://doi.org/10.1007/s00216-007-1505-7.
CAS
Article
PubMed
Google Scholar
Gan T, Shi Z, Sun J, Liu Y. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations–exchanged montmorillonite catalyst. Talanta. 2014;121:187–93. https://doi.org/10.1016/j.talanta.2014.01.002.
CAS
Article
PubMed
Google Scholar
Mohammad-Razdari A, Ghasemi-Varnamkhasti M, Rostami S, Izadi Z, Ensafi AA, Siadat M. Development of an electrochemical biosensor for impedimetric detection of tetracycline in milk. J Food Sci Technol. 2020;57(12):4697–706. https://doi.org/10.1007/s13197-020-04506-2.
CAS
Article
PubMed
PubMed Central
Google Scholar
Taghdisi SM, Danesh NM, Ramezani M, Abnous K. A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens Bioelectron. 2016;85:509–14. https://doi.org/10.1016/j.bios.2016.05.048.
CAS
Article
PubMed
Google Scholar
Wang C-I, Wu W-C, Periasamy AP, Chang H-T. Electrochemical synthesis of photoluminescent carbon nanodots from glycine for highly sensitive detection of hemoglobin. Green Chem. 2014;16(5):2509. https://doi.org/10.1039/c3gc42325e.
CAS
Article
Google Scholar
Wang Y, Gao D, Zhang P, Gong P, Chen C, Gao G, Cai L. A near infrared fluorescence resonance energy transfer based aptamer biosensor for insulin detection in human plasma. Chem Commun (Camb). 2014;50(7):811–3. https://doi.org/10.1039/c3cc47649a.
CAS
Article
Google Scholar
Tsay JM, Michalet X. New light on quantum dot cytotoxicity. Chem Biol. 2005;12(11):1159–61. https://doi.org/10.1016/j.chembiol.2005.11.002.
CAS
Article
PubMed
Google Scholar
Wang H, Lu Q, Hou Y, Liu Y, Zhang Y. High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta. 2016;155:62–9. https://doi.org/10.1016/j.talanta.2016.04.020.
CAS
Article
PubMed
Google Scholar
Xu W, Chen J, Sun S, Tang Z, Jiang K, Song L, Wang Y, Liu C, Lin H. Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and in vivo. Nanoscale. 2018;10(37):17834–41. https://doi.org/10.1039/c8nr03435d.
CAS
Article
PubMed
Google Scholar
Yang W, Huang T, Zhao M, Luo F, Weng W, Wei Q, Lin Z, Chen G. High peroxidase-like activity of iron and nitrogen co-doped carbon dots and its application in immunosorbent assay. Talanta. 2017;164:1–6. https://doi.org/10.1016/j.talanta.2016.10.099.
CAS
Article
PubMed
Google Scholar
Sun S, Zhang L, Jiang K, Wu A, Lin H. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem Mater. 2016;28(23):8659–68. https://doi.org/10.1021/acs.chemmater.6b03695.
CAS
Article
Google Scholar
Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl. 2010;49(38):6726–44. https://doi.org/10.1002/anie.200906623.
CAS
Article
PubMed
Google Scholar
Zhou L, Li Z, Liu Z, Ren J, Qu X. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging. Langmuir. 2013;29(21):6396–403. https://doi.org/10.1021/la400479n.
CAS
Article
PubMed
Google Scholar
Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun (Camb). 2012;48(64):7955–7. https://doi.org/10.1039/c2cc33869f.
CAS
Article
Google Scholar
Ju E, Liu Z, Du Y, Tao Y, Ren J, Qu X. Heterogeneous assembled nanocomplexes for ratiometric detection of highly reactive oxygen species in vitro and in vivo. ACS Nano. 2014;8(6):6014–23. https://doi.org/10.1021/nn501135m.
CAS
Article
PubMed
Google Scholar
Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, Wei H, Zhang Y. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale. 2014;6(3):1890–5. https://doi.org/10.1039/c3nr05380f.
CAS
Article
PubMed
Google Scholar
Jaiswal A, Ghosh SS, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun (Camb). 2012;48(3):407–9. https://doi.org/10.1039/c1cc15988g.
CAS
Article
Google Scholar
Jiang H, Chen F, Lagally MG, Denes FS. New strategy for synthesis and functionalization of carbon nanoparticles. Langmuir. 2010;26(3):1991–5. https://doi.org/10.1021/la9022163.
CAS
Article
PubMed
Google Scholar
Vedamalai M, Periasamy AP, Wang CW, Tseng YT, Ho LC, Shih CC, Chang HT. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale. 2014;6(21):13119–25. https://doi.org/10.1039/c4nr03213f.
CAS
Article
PubMed
Google Scholar
Wang W, Li Y, Cheng L, Cao Z, Liu W. Correction: water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J Mater Chem B. 2015;3(16):3392. https://doi.org/10.1039/c5tb90055g.
CAS
Article
PubMed
Google Scholar
Zhou L, Lin Y, Huang Z, Ren J, Qu X. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun (Camb). 2012;48(8):1147–9. https://doi.org/10.1039/c2cc16791c.
CAS
Article
Google Scholar
Wang L, Bi Y, Gao J, Li Y, Ding H, Ding L. Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. RSC Adv. 2016;6(89):85820–8. https://doi.org/10.1039/C6RA10115A.
CAS
Article
Google Scholar
Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B. 2017;5(45):8904–24. https://doi.org/10.1039/c7tb02484c.
CAS
Article
PubMed
Google Scholar
Malek SNA, Lee GS, Hong SL, Yaacob H, Wahab NA, Faizal Weber JF, Shah SAA. Phytochemical and cytotoxic investigations of Curcuma mangga rhizomes. Molecules. 2011;16(6):4539–48. https://doi.org/10.3390/molecules16064539.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yu J, Yuan K, Li X, Qin R, Li L, Yang X, Yu X, Zhang X, Lu Z, Liu H. Selective detection for seven kinds of antibiotics with blue emitting carbon dots and Al3+ ions. Spectrochim Acta A Mol Biomol Spectrosc. 2019;223:117366. https://doi.org/10.1016/j.saa.2019.117366.
CAS
Article
PubMed
Google Scholar
Wei X, Lv L, Zhang Z, Guan W. Preparation of molecularly imprinted fluorescence sensor based on carbon quantum dots via precipitation polymerization for fluorescence detection of tetracycline. J Appl Polym Sci. 2020;137(38):49126. https://doi.org/10.1002/app.49126.
CAS
Article
Google Scholar
Qu F, Sun Z, Liu D, Zhao X, You J. Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots. Microchim Acta. 2016;183(9):2547–53. https://doi.org/10.1007/s00604-016-1901-9.
CAS
Article
Google Scholar
Korah BK, Chacko AR, Abraham T, Mathew B. Recent progress and future perspectives of carbon dots in the detection, degradation, and enhancement of drugs. Part Part Syst Charact. 2022;39(2):2100264. https://doi.org/10.1002/ppsc.202100264.
CAS
Article
Google Scholar
Shi W, Guo F, Han M, Yuan S, Guan W, Li H, Huang H, Liu Y, Kang Z. N, S co-doped carbon dots as a stable bio-imaging probe for detection of intracellular temperature and tetracycline. J Mater Chem B. 2017;5(18):3293–9. https://doi.org/10.1039/c7tb00810d.
CAS
Article
PubMed
Google Scholar
Fan Y, Qiao W, Long W, Chen H, Fu H, Zhou C, et al. Detection of tetracycline antibiotics using fluorescent “turn-off” sensor based on S, N-doped carbon quantum dots. Spectrochim Acta - A Mol Biomol Spectrosc. 2022;274:121033. https://doi.org/10.1016/j.saa.2022.121033.
CAS
Article
PubMed
Google Scholar
Jia L, Xu Z, Chen R, Chen X, Xu J. Dual-channel probe of carbon dots cooperating with lanthanide complex employed for simultaneously distinguishing and sequentially detecting tetracycline and oxytetracycline. Nanomaterials. 2021;12(1):128. https://doi.org/10.3390/nano12010128.
CAS
Article
PubMed
PubMed Central
Google Scholar
Xue J, Li N-N, Zhang D-M, Bi C-F, Xu C-G, Shi N-N, et al. One-step synthesis of a carbon dot-based fluorescent probe for colorimetric and ratiometric sensing of tetracycline. Anal Methods. 2020;12(42):5097–102. https://doi.org/10.1039/d0ay01699c.
CAS
Article
PubMed
Google Scholar
Lin M, Zou HY, Yang T, Liu ZX, Liu H, Huang CZ. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers. Nanoscale. 2016;8(5):2999–3007. https://doi.org/10.1039/c5nr08177g.
CAS
Article
PubMed
Google Scholar
Li H, Zhao L, Xu Y, Zhou T, Liu H, Huang N, Ding J, Li Y, Ding L. Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta. 2018;185:542–9. https://doi.org/10.1016/j.talanta.2018.04.024.
CAS
Article
PubMed
Google Scholar
Shen Z, Zhang C, Yu X, Li J, Wang Z, Zhang Z, Liu B. Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. J Mater Chem C. 2018;6(36):9636–41. https://doi.org/10.1039/C8TC02982B.
CAS
Article
Google Scholar
Al-Hashimi B, Omer KM, Rahman HS. Inner filter effect (IFE) as a simple and selective sensing platform for detection of tetracycline using milk-based nitrogen-doped carbon nanodots as fluorescence probe. Arab J Chem. 2020;13(4):5151–9. https://doi.org/10.1016/j.arabjc.2020.02.013.
CAS
Article
Google Scholar
Jayaweera S, Yin K, Ng WJ. Nitrogen-doped durian shell derived carbon dots for inner filter effect mediated sensing of tetracycline and fluorescent ink. J Fluoresc. 2018;29(1):221–9. https://doi.org/10.1007/s10895-018-2331-3.
CAS
Article
PubMed
Google Scholar
Feng Y, Zhong D, Miao H, Yang X. Carbon dots derived from rose flowers for tetracycline sensing. Talanta. 2015;140:128–33. https://doi.org/10.1016/j.talanta.2015.03.038.
CAS
Article
PubMed
Google Scholar
Qi H, Teng M, Liu M, Liu S, Li J, Yu H, et al. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J Colloid Interface Sci. 2019;539:332–41. https://doi.org/10.1016/j.jcis.2018.12.047.
CAS
Article
PubMed
Google Scholar
Gao X, Qin J, Liu J, Yang Z, Zhang G, Hou J. Bioinspired carbon dots as an effective fluorescent sensing platform for tetracycline detection and bioimaging. ChemistrySelect. 2022;7(3):e202104030. https://doi.org/10.1002/slct.202104030.
Fu Y, Zhao S, Wu S, Huang L, Xu T, Xing X, Lan M, Song X. A carbon dots-based fluorescent probe for turn-on sensing of ampicillin. Dyes Pigments. 2020;172:107846. https://doi.org/10.1016/j.dyepig.2019.107846.
Xu H, Yang X, Li G, Zhao C, Liao X. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem. 2015;63(30):6707–14. https://doi.org/10.1021/acs.jafc.5b02319.
CAS
Article
PubMed
Google Scholar
Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens Actuators B. 2015;213:434–43. https://doi.org/10.1016/j.snb.2015.02.104.
CAS
Article
Google Scholar
Mehta VN, Jha S, Singhal RK, Kailasa SK. Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J Chem. 2014;38(12):6152–60. https://doi.org/10.1039/C4NJ00840E.
CAS
Article
Google Scholar
Deka MJ, Dutta P, Sarma S, Medhi OK, Talukdar NC, Chowdhury D. Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor. Heliyon. 2019;5(6):e01985. https://doi.org/10.1016/j.heliyon.2019.e01985.
Article
PubMed
PubMed Central
Google Scholar
Li L-S, Jiao X-Y, Zhang Y, Cheng C, Huang K, Xu L. Highly fluorescent carbon dots synthesized with binary dopants for “turn off” and “turn off-on” sensing and cell imaging. Sens Actuators B. 2018;268:84–92. https://doi.org/10.1016/j.snb.2018.03.189.
CAS
Article
Google Scholar
Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem. 2013;52(14):4045–9. https://doi.org/10.1002/anie.201300519.
CAS
Article
Google Scholar
Yang M, Li H, Liu J, Kong W, Zhao S, Li C, Huang H, Liu Y, Kang Z. Convenient and sensitive detection of norfloxacin with fluorescent carbon dots. J Mater Chem B. 2014;2(45):7964–70. https://doi.org/10.1039/c4tb01385a.
CAS
Article
PubMed
Google Scholar
Chen D, Yao D, Xie C, Liu D. Development of an aptasensor for electrochemical detection of tetracycline. Food Control. 2014;42:109–15. https://doi.org/10.1016/j.foodcont.2014.01.018.
CAS
Article
Google Scholar
Qian S, Qiao L, Xu W, Jiang K, Wang Y, Lin H. An inner filter effect-based near-infrared probe for the ultrasensitive detection of tetracyclines and quinolones. Talanta. 2019;194:598–603. https://doi.org/10.1016/j.talanta.2018.10.097.
CAS
Article
PubMed
Google Scholar
Shahshahanipour M, Rezaei B, Ensafi AA, Etemadifar Z. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug. Mater Sci Eng C Mater Biol Appl. 2019;98:826–33. https://doi.org/10.1016/j.msec.2019.01.041.
CAS
Article
PubMed
Google Scholar
Gauthier TD, Shane EC, Guerin WF, Seitz WR, Grant CL. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ Sci Technol. 1986;20(11):1162–6. https://doi.org/10.1021/es00153a012.
CAS
Article
Google Scholar
Zhou JW, Zou XM, Song SH, Chen GH. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. J Agric Food Chem. 2018;66(6):1307–19. https://doi.org/10.1021/acs.jafc.7b05119.
CAS
Article
PubMed
Google Scholar
Yang H, He L, Long Y, Li H, Pan S, Liu H, Hu X. Fluorescent carbon dots synthesized by microwave-assisted pyrolysis for chromium(VI) and ascorbic acid sensing and logic gate operation. Spectrochim Acta A Mol Biomol Spectrosc. 2018;205:12–20. https://doi.org/10.1016/j.saa.2018.07.015.
CAS
Article
PubMed
Google Scholar
Yuan Y, Jiang J, Liu S, Yang J, Zhang H, Yan J, Hu X. Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation. Sens Actuators B. 2017;242:545–53. https://doi.org/10.1016/j.snb.2016.11.050.
CAS
Article
Google Scholar
Li H, Xu Y, Ding J, Zhao L, Zhou T, Ding H, Chen Y, Ding L. Microwave-assisted synthesis of highly luminescent N- and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin. Michrochim Acta. 2018;185(2):104. https://doi.org/10.1007/s00604-017-2619-z.
CAS
Article
Google Scholar
González JA, Callejón Mochón M, de la Rosa FJ. Spectrofluorimetric determination of levofloxacin in tablets, human urine and serum. Talanta. 2000;52(6):1149–56. https://doi.org/10.1016/s0039-9140(00)00484-7.
Article
PubMed
Google Scholar
Ocaña JA, Callejón M, Barragán FJ. Terbium-sensitized luminescence determination of levofloxacin in tablets and human urine and serum. Analyst. 2000;125(10):1851–4. https://doi.org/10.1039/b004252h.
Article
PubMed
Google Scholar
Turku I, Sainio T, Paatero E. Thermodynamics of tetracycline adsorption on silica. Environ Chem Lett. 2007;5(4):225–8. https://doi.org/10.1007/s10311-007-0106-1.
CAS
Article
Google Scholar
Zhou L, Li D-J, Gai L, Wang J-P, Li Y-B. Electrochemical aptasensor for the detection of tetracycline with multiwalled carbon nanotubes amplification. Sens Actuators B. 2012;162(1):201–8. https://doi.org/10.1016/j.snb.2011.12.067.
CAS
Article
Google Scholar
Abraham T, Gigimol MG, Priyanka RN, Punnoose MS, Korah BK, Mathew B. In-situ fabrication of Ag3PO4 based binary composite for the efficient electrochemical sensing of tetracycline. Mater Lett. 2020;279:128502. https://doi.org/10.1016/j.matlet.2020.128502.
Kushikawa RT, Silva MR, Angelo ACD, Teixeira MFS. Construction of an electrochemical sensing platform based on platinum nanoparticles supported on carbon for tetracycline determination. Sens Actuators B. 2016;228:207–13. https://doi.org/10.1016/j.snb.2016.01.009.
CAS
Article
Google Scholar