Skip to main content

C18-modified halloysite as a novel sorbent in matrix solid-phase dispersion for the extraction of bisphenol A and diethylstilbestrol from human placenta

Abstract

In the current study, the C18-modified halloysite was fabricated via silylation reaction and subsequently used as sorbent in matrix solid-phase dispersion (MSPD) for the extraction of bisphenol A and diethylstilbestrol from human placenta, followed by high-performance liquid chromatography-tandem mass spectrometry analysis. The as-prepared sorbent was characterized by scanning electron microscopy, energy-dispersive spectrometry, Fourier transform infrared spectroscopy, X-ray diffraction, and thermo-gravimetric analysis. Varied parameters such as methanol concentration in wash solvent, pH and salt concentration in elution solvent, elution volume, and mass ratio of sample to sorbent were optimized. The adsorption capacities of bisphenol A and diethylstilbestrol on the developed C18-modified halloysite were 6.3 and 14.2 mg g−1, respectively, higher than those on the commercial C18 silica gel. Under the optimal condition, the average recoveries of bisphenol A and diethylstilbestrol by MSPD varied from 91.0 to 106.0%, and the relative standard deviations were less than 10.6% for human placenta samples. The limits of detection in the human placenta were 0.2 μg kg−1 for bisphenol A and diethylstilbestrol. The simple C18-modified halloysite-based MSPD method holds great potential for the determination of trace bisphenol A and diethylstilbestrol in the human placenta and other tissues of pregnant women with high sensitivity, accuracy, and reliability.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aborkhees G, Raina-Fulton R, Thirunavokkarasu O. Determination of endocrine disrupting chemicals in water and wastewater samples by liquid chromatography-negative ion electrospray ionization-tandem mass spectrometry. Molecules. 2020;25(17):3906.

    CAS  Article  Google Scholar 

  2. Tang Z, Xu X, Deng S, Lian Z, Yu K. Oestrogenic endocrine disruptors in the placenta and the fetus. Int J Mol Sci. 2020;21(4):1519.

    CAS  Article  Google Scholar 

  3. Benachour N, Aris A. Toxic effects of low doses of bisphenol-A on human placental cells. Toxicol Appl Pharmacol. 2009;241(3):322–8.

    CAS  Article  Google Scholar 

  4. Jishi TA, Sergi C. Current perspective of diethylstilbestrol (DES) exposure in mothers and offspring. Reprod Toxicol. 2017;71:71–7.

    Article  Google Scholar 

  5. Bhan A, Hussain I, Ansari KI, Bobzean SAM, Perrotti LI, Mandal SS. Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol. J Mol Biol. 2014;426(20):3426–41.

    CAS  Article  Google Scholar 

  6. Yamada H, Furuta I, Kato EH, Kataoka S, Usuki Y, Kobashi G, et al. Maternal serum and amniotic fluid bisphenol A concentrations in the early second trimester. Reprod Toxicol. 2002;16(6):735–9.

    CAS  Article  Google Scholar 

  7. Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002;17(11):2839–41.

    CAS  Article  Google Scholar 

  8. Almeida C, Nogueira JMF. Determination of steroid sex hormones in water and urine matrices by stir bar sorptive extraction and liquid chromatography with diode array detection. J Pharmaceut Biomed. 2006;41(4):1303–11.

    CAS  Article  Google Scholar 

  9. Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002;110(11):A703–7.

    Article  Google Scholar 

  10. Xiao S, Lv S, Cheng Z, Hu C, Li P, Nan F, et al. A simple method for the determination of pharmaceutical and personal care products in fish tissue based on matrix solid-phase dispersion. J Agric Food Chem. 2021;69(51):15738–45.

    CAS  Article  Google Scholar 

  11. Shao B, Han H, Tu X, Huang L. Analysis of alkylphenol and bisphenol A in eggs and milk by matrix solid phase dispersion extraction and liquid chromatography with tandem mass spectrometry. J Chromatogr B. 2007;850(1–2):412–6.

    CAS  Article  Google Scholar 

  12. Albero B, Sánchez-Brunete C, Miguel E, Tadeo JL. Application of matrix solid-phase dispersion followed by GC–MS/MS to the analysis of emerging contaminants in vegetables. Food Chem. 2017;217:660–7.

    CAS  Article  Google Scholar 

  13. Tang J, Wang J, Yuan L, Xiao Y, Wang S, Wang X. Dummy molecularly imprinted matrix solid-phase dispersion for selective extraction of seven estrogens in aquatic products. Food Anal Methods. 2019;12(10):2241–9.

    Article  Google Scholar 

  14. Lvov Y, Wang W, Zhang L, Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater. 2016;28(6):1227–50.

    CAS  Article  Google Scholar 

  15. Yuan P, Tan D, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci. 2015;112–113:75–93.

    Article  Google Scholar 

  16. Yah WO, Takahara A, Lvov YM. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc. 2012;134(3):1853–9.

    CAS  Article  Google Scholar 

  17. Cavallaro G, Lazzara G, Milioto S, Palmisano G, Parisi F. Halloysite nanotube with fluorinated lumen: non-foaming nanocontainer for storage and controlled release of oxygen in aqueous media. J Colloid Interf Sci. 2014;417:66–71.

    CAS  Article  Google Scholar 

  18. Mehdi YA, Fizir M, Itatahine A, He H, Dramou P. Preparation of multifunctional PEG-graft-halloysite nanotubes for controlled drug release, tumor cell targeting, and bio-imaging. Colloid Surface B. 2018;170:322–9.

    Article  Google Scholar 

  19. Xie Y, Qian D, Wu D, Ma X. Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem Eng J. 2011;168(2):959–63.

    CAS  Article  Google Scholar 

  20. Kadam AA, Shinde SK, Ghodake GS, Saratale GD, Saratale RG, Sharma B, et al. Chitosan-grafted halloysite nanotubes-Fe3O4 composite for laccase-immobilization and sulfamethoxazole-degradation. Polymers (basel). 2020;12(10):2221.

    CAS  Article  Google Scholar 

  21. Kouser S, Sheik S, Nagaraja GK, Prabhu A, Prashantha K, D’souza JN, et al. Functionalization of halloysite nanotube with chitosan reinforced poly (vinyl alcohol) nanocomposites for potential biomedical applications. Int J Biol Macromol. 2020;165(Pt A):1079–92.

    CAS  Article  Google Scholar 

  22. Liu W, Fizir M, Hu F, Li A, Hui X, Zha J, et al. Mixed hemimicelle solid-phase extraction based on magnetic halloysite nanotubes and ionic liquids for the determination and extraction of azo dyes in environmental water samples. J Chromatogr A. 2018;1551:10–20.

    CAS  Article  Google Scholar 

  23. Huang Z, He J, Li H, Zhang M, Wang H, Zhang Y, et al. Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples. Food Chem. 2020;308:125696.

    CAS  Article  Google Scholar 

  24. Shi Z, Pang W, Chen M, Wu Y, Zhang H. Polyaniline-modified magnetic halloysite nanotube-based magnetic micro-solid-phase extraction for the analysis of polycyclic aromatic hydrocarbons in beer samples by gas chromatography-mass spectrometry. Food Anal Methods. 2021;14(4):761–72.

    Article  Google Scholar 

  25. Liu M, Guo B, Du M, Lei Y, Jia D. Natural inorganic nanotubes reinforced epoxy resin nanocomposites. J Polym Res. 2008;15(3):205–12.

    CAS  Article  Google Scholar 

  26. Li X, Chen Y, Chen S, Hou C, Xuan R, Gao Y, et al. Polyethyleneimine-functionalized Fe3O4/attapulgite particles for hydrophilic interaction-based magnetic dispersive solid-phase extraction of fluoroquinolones in chicken muscle. Anal Bioanal Chem. 2021;413(13):3529–40.

    CAS  Article  Google Scholar 

  27. Luo P, Zhao YF, Zhang B, Liu JD, Yang Y, Liu JF. Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res. 2010;44(5):1489–97.

    CAS  Article  Google Scholar 

  28. Liu W, Wang R, Hu F, Wu P, Huang T, Fizir M, et al. Novel mixed hemimicelles based on nonionic surfactant–imidazolium ionic liquid and magnetic halloysite nanotubes as efficient approach for analytical determination. Anal Bioanal Chem. 2018;410(28):7357–71.

    CAS  Article  Google Scholar 

  29. El-Sheikh AH, Sweileh JA, Al-Degs YS, Insisi AA, Al-Rabady N. Critical evaluation and comparison of enrichment efficiency of multi-walled carbon nanotubes, C18 silica and activated carbon towards some pesticides from environmental waters. Talanta. 2008;74(5):1675–80.

    CAS  Article  Google Scholar 

  30. Ntsendwana B, Mamba BB, Sampath S, Arotiba OA. Electrochemical detection of bisphenol A using graphene-modified glassy carbon electrode. Int J Electrochem Sci. 2012;7:3501–12.

    CAS  Google Scholar 

  31. Socas-Rodríguez B, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MÁ. Hollow-fiber liquid-phase microextraction for the determination of natural and synthetic estrogens in milk samples. J Chromatogr A. 2013;1313:175–84.

    Article  Google Scholar 

  32. Shchukin DG, Sukhorukov GB, Price RR, Lvov YM. Halloysite nanotubes as biomimetic nanoreactors. Small. 2005;1(5):510–3.

    CAS  Article  Google Scholar 

  33. Darvishnejad M, Ebrahimzadeh H. Halloysite nanotubes functionalized with a nanocomposite prepared from reduced graphene oxide and polythiophene as a viable sorbent for the preconcentration of six organochlorine pesticides prior to their quantitation by GC/MS. Microchim Acta. 2017;184(12):3603–12.

    CAS  Article  Google Scholar 

  34. Vela-Soria F, Ballesteros O, Camino-Sánchez FJ, Zafra-Gómez A, Ballesteros L, Navalón A. Matrix solid phase dispersion for the extraction of selected endocrine disrupting chemicals from human placental tissue prior to UHPLC-MS/MS analysis. Microchem J. 2015;118:32–9.

    CAS  Article  Google Scholar 

  35. Zhang J, Yu F, Tao Y, Du C, Yang W, Chen W, et al. Micro salting-out assisted matrix solid-phase dispersion: a simple and fast sample preparation method for the analysis of bisphenol contaminants in bee pollen. Molecules. 2021;26(8):2350.

    CAS  Article  Google Scholar 

  36. Aznar R, Albero B, Sánchez-Brunete C, Miguel E, Martín-Girela I, Tadeo JL. Simultaneous determination of multiclass emerging contaminants in aquatic plants by ultrasound-assisted matrix solid-phase dispersion and GC-MS. Environ Sci Pollut Res. 2017;24(9):7911–20.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Zhejiang Province Public Welfare Technology Application Research Project (grant numbers LGC19B050004); the Ningbo Natural Science Foundation of China (grant number 202003N4168); and the National Natural Science Foundation of China (grant number 21405085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihui Chen, Rongrong Xuan or Tingting Wang.

Ethics declarations

Ethics approval

The study was approved by the Medical Ethics Committee of the Affiliated Hospital of Medical School of Ningbo University (KS20224021) and has been performed in accordance with the ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1034 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Chen, Y., Jia, J. et al. C18-modified halloysite as a novel sorbent in matrix solid-phase dispersion for the extraction of bisphenol A and diethylstilbestrol from human placenta. Anal Bioanal Chem 414, 4897–4907 (2022). https://doi.org/10.1007/s00216-022-04114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04114-3

Keywords

  • Bisphenol A
  • Diethylstilbestrol
  • Halloysite
  • Human placenta
  • Matrix solid-phase dispersion extraction