Skip to main content

Antenna effect of pyridoxal phosphate on the fluorescence of mitoxantrone-silicon nanoparticles and its application in alkaline phosphatase assay

Abstract

As a kind of sensing and imaging fluorescent probe with the merit of low toxicity, good stability, and environment-friendly, silicon nanoparticles (SiNPs) are currently attracting extensive research. In this work, we obtained mitoxantrone-SiNPs (MXT-SiNPs) with green emission by one-pot synthesis under mild temperature condition. The antenna based on pyridoxal phosphate (PLP) was designed for light-harvesting to enhance the luminescence of MXT-SiNPs and to establish a novel sensing strategy for alkaline phosphatase (ALP). PLP transfers the absorbed photon energy to MXT-SiNPs by forming Schiff base. When PLP is dephosphorized by ALP, the released free hydroxyl group reacts with aldehyde group to form internal hemiacetal, which leads to the failure of Schiff base formation. Based on the relationship between antenna formation ability and PLP hydrolysis degree, the activity of ALP can be measured. A good linear relationship was obtained from 0.2 to 3.0 U/L, with a limit of detection of 0.06 U/L. Furthermore, the sensing platform was successfully used to detect ALP in human serum with recovery of 97.6–106.2%. The rational design of antenna elements for fluorescent nanomaterials can not only provide a new pathway to manipulate the luminescence, but also provide a new direction for fluorescence sensing strategy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

References

  1. Geng X, Li ZH, Hu YL, Liu HF, Sun YQ, Meng HM, Wang YW, Qu LB, Lin YH. One-pot green synthesis of ultrabright N-doped fluorescent silicon nanoparticles for cellular imaging by using ethylenediaminetetraacetic acid disodium salt as an effective reductant. ACS Appl Mater Interfaces. 2018;10(33):27979–86.

    CAS  PubMed  Article  Google Scholar 

  2. Song B, He Y. Fluorescent silicon nanomaterials: from synthesis to functionalization and application. Nano Today. 2019;26:149–63.

    CAS  Article  Google Scholar 

  3. Zhong YL, Sun XT, Wang SY, Peng F, Bao F, Su YY, Li YY, Lee ST, He Y. Facile, Large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano. 2015;9(6):5958–67.

    CAS  PubMed  Article  Google Scholar 

  4. Ji XY, Guo DX, Song B, Wu SC, Chu BB, Su YY, He Y. Traditional Chinese medicine molecule-assisted chemical synthesis of fluorescent anti-cancer silicon nanoparticles. Nano Res. 2018;11(10):5629–41.

    CAS  Article  Google Scholar 

  5. Romano F, Angeloni S, Morselli G, Mazzaro R, Morandi V, Shell JR, Cao X, Pogue BW, Ceroni P. Water-soluble silicon nanocrystals as NIR luminescent probes for time-gated biomedical imaging. Nanoscale. 2020;12(14):7921–6.

    CAS  PubMed  Article  Google Scholar 

  6. Dou YK, Shang Y, He XW, Li WY, Li YH, Zhang YK. Preparation of a ruthenium-complex-functionalized two-photon-excited red fluorescence silicon nanoparticle composite for targeted fluorescence imaging and photodynamic therapy in vitro. ACS Appl Mater Interfaces. 2019;11(15):13954–63.

    CAS  PubMed  Article  Google Scholar 

  7. Chandra S, Beaune G, Shirahata N, Winnik FM. A one-pot synthesis of water soluble highly fluorescent silica nanoparticles. J Mat Chem B. 2017;5(7):1363–70.

    CAS  Article  Google Scholar 

  8. Chen XK, Zhang XD, Xia LY, Wang HY, Chen Z, Wu FG. One-step synthesis of ultrasmall and ultrabright organosilica nanodots with 100% photoluminescence quantum yield: long-term lysosome imaging in living, fixed, and permeabilized cells. Nano Lett. 2018;18(2):1159–67.

    CAS  PubMed  Article  Google Scholar 

  9. Ye HL, Cai SJ, Li S, He XW, Li WY, Li YH, Zhang YK. One-pot microwave synthesis of water-dispersible, high fluorescence silicon nanoparticles and their imaging applications in vitro and in vivo. Anal Chem. 2016;88(23):11631–8.

    CAS  PubMed  Article  Google Scholar 

  10. Han YX, Chen YL, Feng J, Liu JJ, Ma SD, Chen XG. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem. 2017;89(5):3001–8.

    CAS  PubMed  Article  Google Scholar 

  11. Han YX, Chen YL, Feng J, Na M, Liu JJ, Ma YX, Ma SD, Chen XG. Investigation of nitrogen content effect in reducing agent to prepare wavelength controllable fluorescent silicon nanoparticles and its application in detection of 2-nitrophenol. Talanta. 2019;194:822–9.

    CAS  PubMed  Article  Google Scholar 

  12. Oliinyk BV, Korytko D, Lysenko V, Alekseev S. Are fluorescent silicon nanoparticles formed in a one-pot aqueous synthesis? Chem Mater. 2019;31(18):7167–72.

    CAS  Article  Google Scholar 

  13. Han YX, Chen YL, Liu JJ, Niu XY, Ma YX, Ma SD, Chen XG. Room-temperature synthesis of yellow-emitting fluorescent silicon nanoparticles for sensitive and selective determination of crystal violet in fish tissues. Sens Actuator B-Chem. 2018;263:508–16.

    CAS  Article  Google Scholar 

  14. Nsanzamahoro S, Mutuyimana FP, Han YX, Ma SD, Na M, Liu JJ, Ma YX, Ren CL, Chen HL, Chen XG. Highly selective and sensitive detection of catechol by one step synthesized highly fluorescent and water-soluble silicon nanoparticles. Sens Actuator B-Chem. 2019;281:849–56.

    CAS  Article  Google Scholar 

  15. Feng YL, Liu YF, Su C, Ji XH, He ZK. New fluorescent pH sensor based on label-free silicon nanodots. Sens Actuator B-Chem. 2014;203:795–801.

    CAS  Article  Google Scholar 

  16. Chu BB, Wang HY, Song B, Peng F, Su YY, He Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal Chem. 2016;88(18):9235–42.

    CAS  PubMed  Article  Google Scholar 

  17. Zhu LJ, Peng X, Li HT, Zhang YY, Yao SZ. On-off-on fluorescent silicon nanoparticles for recognition of chromium(VI) and hydrogen sulfide based on the inner filter effect. Sens Actuator B-Chem. 2017;238:196–203.

    CAS  Article  Google Scholar 

  18. Li Q, Peng KT, Lu YZ, Li AX, Che FF, Liu YY, Xi XJ, Chu Q, Lan T, Wei Y. Synthesis of fluorescent ionic liquid-functionalized silicon nanoparticles with tunable amphiphilicity and selective determination of Hg2+. J Mat Chem B. 2018;6(48):8214–20.

    CAS  Article  Google Scholar 

  19. Wang YQ, Tian ML, Xie WY, Li CM, Liu YS. One-step synthesis of amine-functionalized fluorescent silicon nanoparticles for copper(II) ion detection. Anal Bioanal Chem. 2019;411(24):6419–26.

    CAS  PubMed  Article  Google Scholar 

  20. Nsanzamahoro S, Cheng W, Mutuyimana FP, Li L, Wang WF, Ren CL, Yi T, Chen HL, Chen XG. Target triggered fluorescence “turn-off” of silicon nanoparticles for cobalt detection and cell imaging with high sensitivity and selectivity. Talanta. 2020;210:120636.

    CAS  PubMed  Article  Google Scholar 

  21. Lin JT, Wang QM. Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics. RSC Adv. 2015;5(35):27458–63.

    CAS  Article  Google Scholar 

  22. Ma SD, Chen YL, Feng J, Liu JJ, Zuo XW, Chen XG. One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem. 2016;88(21):10474–81.

    CAS  PubMed  Article  Google Scholar 

  23. Long Y, Zhang L, Yu Y, Lin BX, Cao YJ, Guo ML. Silicon nanoparticles synthesized using a microwave method and used as a label-free fluorescent probe for detection of VB12. Luminescence. 2019;34(6):544–52.

    CAS  PubMed  Article  Google Scholar 

  24. Liu ZP, Hou JZ, Wang XF, Hou CJ, Ji Z, He Q, Huo DQ. A novel fluorescence probe for rapid and sensitive detection of tetracyclines residues based on silicon quantum dots. Spectrochim Acta Part A. 2020;240:118463.

    CAS  Article  Google Scholar 

  25. Zhang XD, Chen XK, Kai SQ, Wang HY, Yang JJ, Wu FG, Chen Z. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal Chem. 2015;87(6):3360–5.

    CAS  PubMed  Article  Google Scholar 

  26. Wang JJ, Li RY, Long XH, Li ZJ. Synthesis of imidazole-functionalized silicon quantum dots as “off-on” fluorescence probe for highly selective and sensitive detection of L-histidine. Sens Actuator B-Chem. 2016;237:740–8.

    CAS  Article  Google Scholar 

  27. Liu YN, Wang QZ, Guo SW, Jia P, Shui YH, Yao SY, Huang C, Zhang M, Wang L. Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots. Sens Actuator B-Chem. 2018;275:415–21.

    CAS  Article  Google Scholar 

  28. Li Z, Ren XL, Hao CX, Meng XW, Li ZH. Silicon quantum dots with tunable emission synthesized via one-step hydrothermal method and their application in alkaline phosphatase detection. Sens Actuator B-Chem. 2018;260:426–31.

    CAS  Article  Google Scholar 

  29. Du LQ, Li ZP, Yao JL, Wen GM, Dong C, Li H. Enzyme free glucose sensing by amino-functionalized silicon quantum dot. Spectrochim Acta Part A. 2019;216:303–9.

    CAS  Article  Google Scholar 

  30. Taheri M, Mansour N. Functionalized silicon nanoparticles as fluorescent probe for detection of hypochlorite in water. J Photochem Photobiol A-Chem. 2019;382:111906.

    CAS  Article  Google Scholar 

  31. Li Q, Peng KT, Yu YC, Ruan XY, Wei Y. One-pot synthesis of highly fluorescent silicon nanoparticles for sensitive and selective detection of hemoglobin. Electrophoresis. 2019;40(16–17):2129–34.

    CAS  PubMed  Article  Google Scholar 

  32. Huang BH, Shen SS, Wei N, Guo XF, Wang H. Fluorescence biosensor based on silicon quantum dots and 5,5′-dithiobis-(2-nitrobenzoic acid) for thiols in living cells. Spectrochim Acta Part A. 2020;229:117972.

    CAS  Article  Google Scholar 

  33. Xu XL, Ma SY, Xiao XC, Hu Y, Zhao D. The preparation of high-quality water-soluble silicon quantum dots and their application in the detection of formaldehyde. RSC Adv. 2016;6(101):98899–907.

    CAS  Article  Google Scholar 

  34. Yi YH, Liu LR, Zeng W, Lv BH, Zhu GB. Bifunctional silicon quantum dots sensing platform for selective and sensitive detection of p-dihydroxybenzene with double signals. Microchem J. 2019;147:245–52.

    CAS  Article  Google Scholar 

  35. Xun ZQ, Yu TJ, Zeng Y, Chen JP, Zhang XH, Yang GQ, Li Y. Artificial photosynthesis dendrimers integrating light-harvesting, electron delivery and hydrogen production. J Mater Chem A. 2015;3(24):12965–71.

    CAS  Article  Google Scholar 

  36. Charalambidis G, Karikis K, Georgilis E, M’Sabah BL, Pellegrin Y, Planchat A, Lucas B, Mitraki A, Boucle J, Odobel F, Coutsolelos AG. Supramolecular architectures featuring the antenna effect in solid state DSSCs. Sustain Energ Fuels. 2017;1(2):387–95.

    CAS  Article  Google Scholar 

  37. Liu J, Chen K, Pan GM, Luo ZJ, Xie Y, Li YY, Lin YJ, Hao ZH, Zhou L, Ding SJ, Wang QQ. Largely enhanced photocatalytic hydrogen production rate of CdS/(Au-ReS2) nanospheres by the dielectric-plasmon hybrid antenna effect. Nanoscale. 2018;10(41):19586–94.

    CAS  PubMed  Article  Google Scholar 

  38. Zhang JF, An FF, Li YA, Zheng CJ, Yang YL, Zhang XJ, Zhang XH. Simultaneous enhanced diagnosis and photodynamic therapy of photosensitizer-doped perylene nanoparticles via doping, fluorescence resonance energy transfer, and antenna effect. Chem Commun. 2013;49(73):8072–4.

    CAS  Article  Google Scholar 

  39. Dogaheh SG, Soleimannejad J, Sanudo EC. Asymmetric Schiff base ligand enables synthesis of fluorescent and near-IR emitting lanthanide compounds. J Mol Struct. 2020;1219:129060.

    Article  CAS  Google Scholar 

  40. Chen CX, Zhao D, Wang B, Ni PJ, Jiang YY, Zhang CH, Yang F, Lu YZ, Sun J. Alkaline phosphatase-triggered in situ formation of silicon-containing nanoparticles for a fluorometric and colorimetric dual-channel immunoassay. Anal Chem. 2020;92(6):4639–46.

    CAS  PubMed  Article  Google Scholar 

  41. Mukherjee T, Hanes J, Tews I, Ealick SE, Begley TP. Pyridoxal phosphate: biosynthesis and catabolism. BBA-Proteins Proteomics. 2011;1814(11):1585–96.

    CAS  PubMed  Article  Google Scholar 

  42. Deng HH, Huang KY, He SB, Xue LP, Peng HP, Zha DJ, Sun WM, Xia XH, Chen W. Rational design of high-performance donor-linker-acceptor hybrids using a Schiff base for enabling photoinduced electron transfer. Anal Chem. 2020;92(2):2019–26.

    CAS  PubMed  Article  Google Scholar 

  43. Niu XH, Ye K, Wang LJ, Lin YH, Du D. A review on emerging principles and strategies for colorimetric and fluorescent detection of alkaline phosphatase activity. Anal Chim Acta. 2019;1086:29–45.

    CAS  PubMed  Article  Google Scholar 

  44. Zhang ZY, Chen ZP, Wang SS, Cheng FB, Chen LX. Iodine-mediated etching of gold nanorods for plasmonic ELISA based on colorimetric detection of alkaline phosphatase. ACS Appl Mater Interfaces. 2015;7(50):27639–45.

    CAS  PubMed  Article  Google Scholar 

  45. Peng HP, Huang ZN, Wu WH, Liu MK, Huang KY, Yang Y, Deng H, Xia XH, Chen W. Versatile high-performance electrochemiluminescence ELISA platform based on a gold nanocluster probe. ACS Appl Mater Interfaces. 2019;11(27):24812–9.

    CAS  PubMed  Article  Google Scholar 

  46. Han YX, Chen J, Li Z, Chen HL, Qiu HD. Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosens Bioelectron. 2020;148:111811.

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

We received the financial support of the National Natural Science Foundation of China (81772287), the Natural Science Foundation of Fujian Province (2020J011203), the Program for Innovative Leading Talents in Fujian Province (2016B016), and the Program for Innovative Research Team in Science and Technology in Fujian Province University (2018B033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin-Huan Liu, Wei Chen or Guo-Lin Hong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 262 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, HH., Yang, HJ., Huang, KY. et al. Antenna effect of pyridoxal phosphate on the fluorescence of mitoxantrone-silicon nanoparticles and its application in alkaline phosphatase assay. Anal Bioanal Chem 414, 4877–4884 (2022). https://doi.org/10.1007/s00216-022-04110-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04110-7

Keywords

  • Silicon nanoparticles
  • Mitoxantrone
  • Fluorescence
  • Antenna effect
  • Pyridoxal phosphate