Skip to main content

An effective long-wavelength fluorescent sensor for Cu2+ based on dibenzylidenehydrazine-bridged biphenylacrylonitrile

Abstract

Although numerous fluorescence sensors for Cu2+ have been presented, a long-wavelength sensor in aqueous media has rarely been reported as expected due to practical application requirements. In this work, a novel AIE molecule (DHBB) containing two biphenylacrylonitrile units bridged by dibenzylidenehydrazine was prepared. It possessed the merits of long-wavelength emission, good emission in aqueous media, and multiple functional groups for binding Cu2+. It exhibited good sensing selectivity for Cu2+ among all kinds of tested metal ions. The detection limit was as low as 1.08 × 10−7 M. The sensing mechanism was clarified as 1:1 stoichiometric ratio based on the binding cooperation of O and N functional groups of DHBB. The selective sensing ability for Cu2+ remained stable at pH = 5–9 and was influenced little by other metal ions. The Cu2+ sensing ability of DHBB was applied in real samples with 96% recovery rate. The bio-imaging experiment of living cells suggested that DHBB possessed not only good bio-imaging performance but also sensing ability for Cu2+ in living environments. This work suggested the good application prospect of DHBB to sense Cu2+ in real samples and living environment.

Graphical abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 2008;4:176–85.

    CAS  PubMed  Article  Google Scholar 

  2. Que E, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108:1517–49.

    CAS  PubMed  Article  Google Scholar 

  3. Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem. 2010;79:537–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev. 2006;106:1995–2044.

    CAS  PubMed  Article  Google Scholar 

  5. Kaler SG. ATP7A-related copper transport diseases–emerging concepts and future trends. Nat Rev Neurol. 2011;7:15–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK. Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol. 2015;29:11–23.

    CAS  PubMed  Article  Google Scholar 

  7. Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J Trace Elem Med Biol. 2015;31:193–203.

    CAS  PubMed  Article  Google Scholar 

  8. Kumar M, Puri A. A review of permissible limits of drinking water. Indian J Occup Environ Med. 2012;16:40–4.

    PubMed  PubMed Central  Article  Google Scholar 

  9. Longstreet AR, Jo M, Chandler RR, Hanson K, Zhan N, Hrudka JJ, Mattoussi H, Shatruk M, Mcquade DT. J Am Chem Soc. 2014;136:15493–6.

    CAS  PubMed  Article  Google Scholar 

  10. Qiu J, Jiang S, Guo H, Yang F. An AIE and FRET-based BODIPY sensor with large Stoke shift: novel pH probe exhibiting application in CO32- detection and living cell imaging. Dyes Pigm. 2018;157:351–8.

    CAS  Article  Google Scholar 

  11. Dong L, Deng C, He C, Shi L, Fu Y, Zhu D, Cao H, He Q, Cheng J. Highly sensitive vapor detection of amines with fluorescent conjugated polymer: a novel lasing turn-on sensory mechanism. Sensors Actuators B Chem. 2013;180:28–34.

    CAS  Article  Google Scholar 

  12. Qiu J, Chen Y, Jiang S, Guo H, Yang F. A fluorescent sensor based on aggregation-induced emission: highly sensitive detection for hydrazine and application in living cell imaging. Analyst. 2018;143:4298–305.

    CAS  PubMed  Article  Google Scholar 

  13. Mei J, Huang Y, Tian H. Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl Mater Interfaces. 2018;10:12217–61.

    CAS  PubMed  Article  Google Scholar 

  14. Jiang S, Hu X, Qiu J, Guo H, Yang F. A fluorescent sensor for folic acid based on crown ether-bridged bis-tetraphenylethylene. Analyst. 2019;144:2662–9.

    CAS  PubMed  Article  Google Scholar 

  15. Lincoln R, Greene LE, Zhang W, Louisia S, Cosa G. Mitochondria alkylation and cellular trafficking mapped with a lipophilic BODIPY-acrolein fluorogenic probe. J Am Chem Soc. 2017;139:16273–81.

    CAS  PubMed  Article  Google Scholar 

  16. Guo H, Lin J, Zheng L, Yang F. An effective fluorescent sensor for ClO- in aqueous media based on thiophene-cyanostilbene Schiff-base. Spectrochim Acta A. 2021;256:119744.

    CAS  Article  Google Scholar 

  17. Sivaraman G, Iniya M, Anand T, Kotla NG, Sunnapu O, Singaravadivel S, Gulyani A, Chellappa D. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord Chem Rev. 2018;357:50–104.

    CAS  Article  Google Scholar 

  18. Chen S, Jiang S, Guo H, Yang F. “Turn-on” fluorescent sensor for Th4+ in aqueous media based on a combination of PET-AIT effect. Spectrochim Acta A. 2020;248:119191.

    Article  CAS  Google Scholar 

  19. Kuo S, Li H, Wu P, Chen C, Huang Y, Chan Y. Dual colorimetric and fluorescent sensor based on semiconducting polymer dots for ratiometric detection of lead ions in living cells. Anal Chem. 2015;87:4765–71.

    CAS  PubMed  Article  Google Scholar 

  20. Bi J, Ji X, Guo M, Guo H, Yang F. A fluorescent sensor for thymine based on Bis-BODIPY containing butanediamino bridge. New J Chem. 2019;43:5890–6.

    CAS  Article  Google Scholar 

  21. Li Y, Liu Y, Zhou H, Chen W, Mei J, Su J. Ratiometric Hg2+/Ag+ probes with orange red-white-blue fluorescence response constructed by integrating vibration-induced emission with an aggregation-induced emission motif. Chem Eur J. 2017;23:9280–7.

    CAS  PubMed  Article  Google Scholar 

  22. Jiang S, Qiu J, Wang Z, Guo H, Yang F. First fluorescent sensor for curcumin in aqueous phase based on acylhydrazone-bridged bis-tetraphenylethylene. Spectrochim Acta A. 2020;229:117916.

    CAS  Article  Google Scholar 

  23. Jiang S, Chen S, Wang Z, Guo H, Yang F. First fluorescence sensor for simultaneously detecting three kinds of IIB elements (Zn2+, Cd2+ and Hg2+) based on AIEgen. Sensors Actuators B Chem. 2020;308:127734.

    CAS  Article  Google Scholar 

  24. Ma H, Wu R, Xiong J, Guo H, Yang F. Bis-biphenylacrylonitrile bridged with crown ether chain: the novel fluorescence sensor for Fe3+ in aqueous media. New J Chem. 2020;44:11746–51.

    CAS  Article  Google Scholar 

  25. Jiang S, Chen S, Guo H, Yang F. “Turn-on” near-infrared fluorescence sensor for Y3+ based on Schiff-based tetraphenylethylene. Dye Pigm. 2020;183:108717.

    CAS  Article  Google Scholar 

  26. Chen J, Zhou B, Li Y, Zheng L, Guo H, Yang F. A “turn-on” fluorescent sensor for cytosine in aqueous media based on diamino-bridged biphenylacrylonitrile. New J Chem. 2020;45:1373–80.

    CAS  Article  Google Scholar 

  27. Gong Y, Du C, Wang X, Guo H, Yang F. First stable (Z)-configuration of cyanostilbene decorated with crown-ether ring: an effective “turn-on“ fluorescent sensor for lysine in aqueous media. Microchem J. 2021;162:105866.

    CAS  Article  Google Scholar 

  28. Chen S, Zheng S, Jiang S, Guo H, Yang F. A simple “turn-on” fluorescence sensor for salicylaldehyde based on switch of PET-AIE effect. Anal Bioanal Chem. 2021;413:1955–66.

    CAS  PubMed  Article  Google Scholar 

  29. Zheng S, Ye Y, Guo H, Yang F. Crown-ether-bridging bis-diphenylacrylonitrile macrocycle: the effect fluorescence sensor for oxytetracycline. J Photochem Photobiol A Chem. 2021;412:113219.

    Article  CAS  Google Scholar 

  30. Yin P, Niu Q, Wei T, Li T, Li Y, Yang Q. A new thiophene-based dual functional chemosensor for ultrasensitive colorimetric detection of Cu2+ in aqueous solution and highly selective fluorimetric detection of Al3+ in living cells. J Photoch Photobiol A Chem. 2020;389:112249.

    CAS  Article  Google Scholar 

  31. Mani KS, Rajamanikandan R, Murugesapandian B, Shankar R, Sivaraman G, Ilanchelian M, Rajendran SP. Coumarin based hydrazone as an ICT-based fluorescence chemosensor for the detection of Cu2+ ions and the application in HeLa cells. Spectrochim Acta A. 2019;214:170–6.

    CAS  Article  Google Scholar 

  32. Zhang S, Niu Q, Lan L. Novel oligothiophene-phenylamine based Schiff base as a fluorescent chemosensor for the dual-channel detection of Hg2+ and Cu2+ with high sensitivity and selectivity. Sensors Actuators B Chem. 2017;240:793–800.

    CAS  Article  Google Scholar 

  33. Wang J, Wei T, Ma F, Li T, Niu Q. A novel fluorescent and colorimetric dualchannel sensor for the fast, reversible and simultaneous detection of Fe3+ and Cu2+ based on terthiophene derivative with high sensitivity and selectivity. J Photochem Photobiol A Chem. 2019;383:111982.

    CAS  Article  Google Scholar 

  34. Guo Z, Hu T, Wang X, Sun T, Li T, Niu Q. Highly sensitive and selective fluorescent sensor for visual detection of Cu2+ in water and food samples based on oligothiophene derivative. J Photochem Photobiol A Chem. 2019;371:50–8.

    CAS  Article  Google Scholar 

  35. Guo Z, Niu Q, Li T, Wang E. Highly chemoselective colorimetric/fluorimetric sensitive detection of Cu2+. Tetrahedron. 2019;75:3982–92.

    CAS  Article  Google Scholar 

  36. Wang J, Niu Q, Wei T, Li T, Hu T, Chen J, Qin X, Yang Q, Yang L. Novel phenothiazine-based fast-responsive colori/fluorimetric sensor for highly sensitive, selective and reversible detection of Cu2+ in real water samples and its application as an efficient solid-state sensor. Microchem J. 2020;157:104990.

    CAS  Article  Google Scholar 

  37. Anbu S, Paul A, Surendranath K, Sidali A, Pombeiro AJL. Naphthalimide- phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells. J Inorg Biochem. 2021;220:111466.

    CAS  PubMed  Article  Google Scholar 

  38. Fu QQ, Hu JH, Yao Y, Yin ZY, Gui K, Xu N, Niu LY, Zhang YQ. A benzimidazole derivative based LMCT sensor for the detection of Cu2+ in DMSO/H2O (2:3 v/v) solution and its application in implication logic gates. J Photochem Photobiol A Chem. 2020;391:112358.

    CAS  Article  Google Scholar 

  39. Chiou YR, Yan H, Wan C, Huang C, Wu A. A Schiff-based fluorescence sensor for the detection of Cu2+ and its application in living cells. J Photochem Photobiol A Chem. 2020;390:112326.

    CAS  Article  Google Scholar 

  40. Reddy TS, Reddy AR. 2-Hexylaminoethyl-amidonaphthalimide as Cu2+ sensor. Spectrochim Acta A. 2014;128:880–6.

    Article  CAS  Google Scholar 

  41. Wang X, Song H, Fan C, Pu S. Europium(III) complex fluorescent sensor for dual channel recognition of Sn2+ and Cu2+ ions in water. Spectrochim Acta A. 2021;250:119373.

    CAS  Article  Google Scholar 

  42. Das R, Bej S, Ghosh D, Murmu NC, Hirani H, Banerjee P. Stimuli-responsive discriminative detection of Cu2+ and Hg2+ with concurrent sensing of S2- from aqueous medium and bio-fluids by C-N fused azophenine functionalized “smart” hydrogel assay @A potential biomarker sensor for Wilson’s disease. Sensors Actuators B Chem. 2021;341:129925.

    CAS  Article  Google Scholar 

  43. Hang YJ, Boryczka J, Wu NQ. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev. 2022;51:329–75.

    CAS  PubMed  Article  Google Scholar 

  44. Wang YS, Yu HL, Zhang Y, Jia CL, Ji M. Development and application of several fluorescent probes in near infrared region. Dye Pigm. 2021;190:109284.

    CAS  Article  Google Scholar 

  45. Qiu J, Jiang S, Lin B, Guo H, Yang F. An unusual AIE fluorescent sensor for sequentially detecting Co2+-Hg2+-Cu2+ based on diphenylacrylonitrile Schiff-base derivative. Dyes Pigm. 2019;170:107590.

    CAS  Article  Google Scholar 

  46. Jiang S, Qiu J, Chen S, Guo H, Yang F. Double-detecting fluorescent sensor for ATP based on Cu2+ and Zn2+ response of hydrazono-bis-tetraphenylethylene. Spectrochim Acta A. 2020;227:117568.

    CAS  Article  Google Scholar 

  47. Zha B, Fang S, Chen H, Guo H, Yang F. An effective dual sensor for Cu2+ and Zn2+ with long-wavelength fluorescence in aqueous media based on biphenylacrylonitrile Schiff-base. Spectrochim Acta A. 2022;269:120765.

    CAS  Article  Google Scholar 

  48. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-induced emission: together we shine, united we soar! Chem Rev. 2015;115:11718–940.

    CAS  PubMed  Article  Google Scholar 

  49. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater. 2014;26:5429–79.

    CAS  PubMed  Article  Google Scholar 

  50. Kwok RTK, Leung CWT, Lam JWY, Tang BZ. Biosensing by luminogens with aggregation-induced emission characteristics. Chem Soc Rev. 2015;44:4228–38.

    CAS  PubMed  Article  Google Scholar 

  51. Lin L, Lin X, Guo H, Yang F. Diphenylacrylonitrile-connected BODIPY dyes: the fluorescence enhancement based on dark and AIE resonance energy transfer. Org Biomol Chem. 2017;15:6006–13.

    CAS  PubMed  Article  Google Scholar 

  52. Pundi A, Chang CJ, Chen YS, Chen JK, Yeh JM, Zhuang CS, Lee MC. An aniline trimer-based multifunctional sensor for colorimetric Fe3+, Cu2+ and Ag+ detection, and its complex for fluorescent sensing of L-tryptophan. Spectrochim Acta A. 2021;247:119075.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No.: 21406036), Fujian Science and Technology Project (No. 2019N0010), and Undergraduate innovation program of FJNU (2022) was greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fafu Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1146 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yuan, Y., Xu, X. et al. An effective long-wavelength fluorescent sensor for Cu2+ based on dibenzylidenehydrazine-bridged biphenylacrylonitrile. Anal Bioanal Chem 414, 4707–4716 (2022). https://doi.org/10.1007/s00216-022-04093-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04093-5

Keywords

  • Sensor
  • Long-wavelength
  • Fluorescence
  • Cu2+
  • Biphenylacrylonitrile