Skip to main content
Log in

Using an insulating fiber as the sampling probe and ionization substrate for ambient ionization–mass spectrometric analysis of volatile, semi-volatile, and polar analytes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sharp metal needle used as the ionization emitter in conventional atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) is usually required for analyte ionization through corona discharge (i.e., gas discharge). Nevertheless, we herein demonstrate that an insulating fiber (tip diameter: 10–60 µm; length: ~ 1 cm) made of glass or bamboo can function as an APCI-like ionization emitter. Although no direct electric contact is made on the fiber, the ionization of volatiles and semi-volatiles occurs when the fiber is placed close (~ 1 mm) to the inlet of the mass spectrometer. No analyte ion signals can be observed without placing the insulating fiber in front of the mass spectrometer. The generation of ion species mainly relies on the electric field provided by the mass spectrometer. Presumably, owing to the high electric field provided by the mass spectrometer, the dielectric breakdown voltages of gas molecules in the air and the fiber are overcome, leading to the ionization of analytes in gas phase. In addition, the insulating fiber can function as a holder for sample solutions. Electrospray ionization–like processes derived from polar analytes such as amino acids, peptides, and proteins can readily occur when the insulating fiber deposited with a sample droplet is placed close to the inlet of the mass spectrometer. The feasibility of using the current approach for the detection of nonpolar and polar analytes from complex fetal bovine serum samples without tedious sample pretreatment is demonstrated in this work. The main advantage of using the suggested fiber is that the fiber can be used as the sampling probe to pick up samples and placed in front of a mass spectrometer for direct MS analysis. The application of using a robust, insulating, and disposable probe to pick up samples from real samples such as onion, honey, and pork samples followed by direct MS analysis is also demonstrated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. El-Aneed A, Cohen A, Banoub J. Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers. Appl Spectro Rev. 2009;44:210–30.

    Article  CAS  Google Scholar 

  2. Song HN, Kim CH, Lee WY, Cho SH. Simultaneous determination of volatile organic compounds with a wide range of polarities in urine by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2017;31:613–22.

    Article  CAS  PubMed  Google Scholar 

  3. Kandiah M, Urban PL. Advances in ultrasensitive mass spectrometry of organic molecules. Chem Soc Rev. 2013;42:5299–322.

    Article  CAS  PubMed  Google Scholar 

  4. Kebarle P, Verkerk UH. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev. 2009;28:898–917.

    Article  CAS  PubMed  Google Scholar 

  5. Carroll DI, Dzidic I, Stillwell RN, Haegele KD, Horning EC. Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system. Anal Chem. 1975;47:2369–73.

    Article  CAS  Google Scholar 

  6. Cody RB, Laramee JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302.

    Article  CAS  PubMed  Google Scholar 

  7. Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient ionization mass spectrometry: recent developments and applications. Anal Chem. 2019;91:4266–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McBride EM, Mach PM, Dhummakupt ES, Dowling S, Carmany DO, Demond PS, Rizzo G, Manicke NE, Glaros T. Paper spray ionization: applications and perspectives. Trac-Trend Anal Chem. 2019;118:722–30.

    Article  CAS  Google Scholar 

  9. Ng LK, Lafontaine P, Vanier MJ. Characterization of cigarette tobacco by direct electrospray ionization−ion trap mass spectrometry (ESI-ITMS) analysis of the aqueous extract a novel and simple approach. Agric Food Chem. 2004;52:7251–7.

    Article  CAS  Google Scholar 

  10. Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306:471–3.

    Article  CAS  PubMed  Google Scholar 

  11. Wleklinski M, Li Y, Bag S, Sarkar D, Narayanan R, Pradeep T, Cooks RG. Zero volt paper spray ionization and its mechanism. Anal Chem. 2015;87:6786–93.

    Article  CAS  PubMed  Google Scholar 

  12. Na N, Zhao M, Zhang S, Yang C, Zhang XJ. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom. 2007;18:1859–62.

    Article  CAS  PubMed  Google Scholar 

  13. Venter A, Nefliu M, Cooks RG. Ambient desorption ionization mass spectrometry. Trac-Trend Anal Chem. 2008;2:284–90.

    Article  CAS  Google Scholar 

  14. Liu J, Wang H, Manicke NE, Lin JM, Cooks RG, Ouyang Z. Development, characterization, and application of paper spray ionization. Anal Chem. 2010;82:2463–71.

    Article  CAS  PubMed  Google Scholar 

  15. Harris GA, Galhena AS, Fernández FM. Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem. 2011;83:4508–38.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Ren X, Chingin K. Applications of direct analysis in real time mass spectrometry in food analysis: a review. Rapid Commun Mass Spectrom. 2021;35:9013.

    Google Scholar 

  17. Cheng SC, Jhang SS, Huang MZ, Shiea J. Simultaneous detection of polar and nonpolar compounds by ambient mass spectrometry with a dual electrospray and atmospheric pressure chemical ionization source. Anal Chem. 2015;87:1743–8.

    Article  CAS  PubMed  Google Scholar 

  18. Galaon T, Vacaresteanu C, Anghel DF, David V. Simultaneous ESI-APCI (+) ionization and fragmentation pathways for nine benzodiazepines and zolpidem using single quadrupole LC-MS. Drug Test Anal. 2014;6:439–50.

    CAS  PubMed  Google Scholar 

  19. Hong CM, Lee CT, Lee YM, Kuo CP, Yuan CH, Shiea J. Generating electrospray from solutions predeposited on a copper wire. Rapid Commun Mass Spectrom. 1999;13:21–5.

    Article  CAS  Google Scholar 

  20. Huang D-Y, Tsai J-J, Chen Y-C. Direct mass spectrometric analysis of semivolatiles derived from real samples at atmospheric pressure. ACS Omega. 2022;7(12):10255–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu B, So PK, Chen H, Yao ZP. Electrospray ionization using wooden tips. Anal Chem. 2011;83:8201–7.

    Article  CAS  PubMed  Google Scholar 

  22. So PK, Ng TT, Wang H, Hu B, Yao ZP. Rapid detection and quantitation of ketamine and norketamine in urine and oral fluid by wooden-tip electrospray ionization mass spectrometry. Analyst. 2013;138:2239–43.

    Article  CAS  PubMed  Google Scholar 

  23. Meher AK, Chen Y-C. Analysis of volatile compounds by open-air ionization mass spectrometry. Anal Chim Acta. 2017;966:41–6.

    Article  CAS  PubMed  Google Scholar 

  24. Hsieh C-H, Chang C-H, Urban PL, Chen Y-C. Capillary action-supported contactless atmospheric pressure ionization for the combined sampling and mass spectrometric analysis of biomolecules. Anal Chem. 2011;83:2866–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lo T-J, Chang C-H, Chen Y-C. Syringe infusion-based contactless atmospheric pressure ionization mass spectrometry for small and large biomolecules. Mass Spectrom Lett. 2012;3:87–92.

    Article  CAS  Google Scholar 

  26. Hsieh C-H, Chao C-S, Mong K-KT, Chen Y-C. Online monitoring of chemical reactions by contactless atmospheric pressure ionization mass spectrometry. J Mass Spectrom. 2012;47:586–90.

    Article  CAS  PubMed  Google Scholar 

  27. Yang Y, Deng J, Yao ZP. Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines. Anal Chim Acta. 2015;887:127–37.

    Article  CAS  PubMed  Google Scholar 

  28. Meher AK, Chen Y-C. Tissue paper assisted spray ionization mass spectrometry. RSC Adv. 2015;5:94315–20.

    Article  CAS  Google Scholar 

  29. Meher AK, Chen Y-C. Polarization induced electrospray ionization mass spectrometry for the analysis of liquid, viscous and solid samples. J Mass Spectrom. 2015;50:444–50.

    Article  CAS  PubMed  Google Scholar 

  30. Wu M-L, Chen T-Y, Chen Y-C, Chen Y-C. Carbon fiber ionization mass spectrometry for the analysis of analytes in vapor, liquid, and solid phases. Anal Chem. 2017;89:13458–65.

    Article  CAS  PubMed  Google Scholar 

  31. Wu M-L, Chen T-Y, Chen W-J, Baig MMF, Wu Y-C, Chen Y-C. Carbon fiber ionization mass spectrometry coupled with solid phase microextraction for analysis of benzo [a] pyrene. Anal Chim Acta. 2019;1049:133–40.

    Article  CAS  PubMed  Google Scholar 

  32. Wu M-L, Wu Y-C, Chen Y-C. Detection of pesticide residues on intact tomatoes by carbon fiber ionization mass spectrometry. Anal Bioanal Chem. 2019;411(5):1095–105.

    Article  CAS  PubMed  Google Scholar 

  33. Wu Y-C, Chen Y-C. Reactive carbon fiber ionization-mass spectrometry for characterization of unsaturated hydrocarbons from plant aroma. Anal Bioanal Chem. 2020;412:5489–97.

    Article  PubMed  CAS  Google Scholar 

  34. Huang D-Y, Wang M-J, Wu J-J, Chen Y-C. Ionization of volatile organics and nonvolatile biomolecules directly from a titanium slab for mass spectrometric analysis. Molecules. 2021;26:6760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mousa MS, Alnawasreh S, Madanat MA, Al-Rabadi AN. Investigating of the field emission performance on nano-apex carbon fiber and tungsten tips. In IOP Conf Ser Mater Sci Eng. 2015;92:012022.

    Article  CAS  Google Scholar 

  36. Han S, Lee MH, Ihm J. Dynamical simulation of field emission in nanostructures. J Phys Rev B. 2002;65:085405.

    Article  CAS  Google Scholar 

  37. Bolden AL, Kwiatkowski CF, Colborn T. New look at BTEX: are ambient levels a problem? Environ Sci Technol. 2015;49:5261–76.

    Article  CAS  PubMed  Google Scholar 

  38. Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A, Haick H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev. 2012;112:5949–66.

    Article  CAS  PubMed  Google Scholar 

  39. Kamal MA, Klein P. Estimation of BTEX in groundwater by using gas chromatography–mass spectrometry. Saudi J Biol Sci. 2010;17:205–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Badjagbo K, Loranger S, Moore S, Tardif R, Sauve S. BTEX exposures among automobile mechanics and painters and their associated health risks. Hum Ecol Risk Assess. 2010;16:301–16.

    Article  CAS  Google Scholar 

  41. Bories GP, Brantom JB, de Barbera A, Chesson PS, Cocconcelli B, Debski N, Dierick J, Gropp I, Halle C, Hogstrand, et al. Safety evaluation of ractopamine. EFSA J. 2009;7:1041.

    Google Scholar 

  42. Codex. Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods. In: 38th Session of the Codex Alimentarius Commission. Geneva, Switzerland, July, 2015.

  43. Morales FJ, Stadler RH, Lineback DR, editors. Process-induced food toxicants: occurrence, formation, mitigation and health risks. Hoboken: John Wiley & Sons Inc; 2009. p. 134–75.

    Google Scholar 

  44. Codex Alimentarius Commission, Codex standard for honey, CODEX STAN 12–1981; Food and Agriculture Organization of the United Nations and the World Health Organization, Rome, Italy, 2001.

  45. Price PS, Jayjock MA. Available data on naphthalene exposures: strengths and limitations. Regul Toxicol Pharmacol. 2008;51:15–21.

    Article  CAS  Google Scholar 

  46. Neusel C, Schneider GA. Size-dependence of the dielectric breakdown strength from nano-to millimeter scale. J MecFh Phys Solids. 2014;63:201–13.

    Article  Google Scholar 

  47. Taylor MJ, Liyu A, Vertes A, Anderton CR. Ambient single-cell analysis and native tissue imaging using laser-ablation electrospray ionization mass spectrometry with increased spatial resolution. J Am Soc Mass Spectrom. 2021;32:2490–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We received financial support from the Ministry of Science and Technology of Taiwan (MOST 108–2113-M-009–018-MY3). MOST provided KS postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chie Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2122 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaprakash, K., Chen, YC. Using an insulating fiber as the sampling probe and ionization substrate for ambient ionization–mass spectrometric analysis of volatile, semi-volatile, and polar analytes. Anal Bioanal Chem 414, 4633–4643 (2022). https://doi.org/10.1007/s00216-022-04080-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04080-w

Keywords

Navigation