Skip to main content

Advertisement

Log in

Intact quantitative bioanalytical method development and fit-for-purpose validation of a monoclonal antibody and its related fab fragment in human vitreous and aqueous humor using LC-HRMS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ranibizumab is an FDA-approved drug used to treat wet age-related macular degeneration (AMD), diabetic retinopathy, macular edema, and myopic choroidal neovascularization. Bevacizumab is another drug often used off-label to treat wet AMD. In order to reduce unwanted angiogenesis, ranibizumab and bevacizumab target circulating VEGF-A in the eye. Concentration levels in human vitreous and aqueous humor can be used to provide valuable efficacy information. However, vitreous and aqueous humor’s aqueous environment, and vitreous humor’s viscosity, as well as the stickiness of the analytes can provide bioanalytical challenges. In this manuscript, we describe the development, optimization, and fit-for-purpose validation of an LC-HRMS method designed for intact quantitative bioanalysis of ranibizumab and bevacizumab in human vitreous and aqueous humor following intravitreal administration. In order to fully develop this method, evaluations were conducted to optimize the conditions, including the data processing model (extracted ion chromatograms (XICs) vs deconvolution), carryover mitigation, sample preparation scheme optimization for surrogate and primary matrices, use of internal standard/immunocapture/deglycosylation, and optimization of the extraction and dilution procedure, as well as optimization of the liquid chromatography and mass spectrometry conditions. Once the method was fully optimized, a fit-for-purpose validation was conducted, including matrix parallelism, with a linear calibration range of 10 to 200 µg/mL. The development of this intact quantitative method using LC-HRMS provides a proof-of-concept template for challenging, but valuable new and exciting bioanalytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Griffiths RA, Konijnenberg A, Viner R, Cooper HJ. Direct mass spectrometry analysis of protein complexes and intact proteins up to >70 kDa from tissue. Anal Chem (Washington). 2019;91(11):6962–6. https://doi.org/10.1021/acs.analchem.9b00971.

    Article  CAS  Google Scholar 

  2. Samonig M, Huber C, Scheffler K. LC / MS Analysis of the monoclonal antibody rituximab using the Q exactive benchtop orbitrap mass spectrometer. Thermo Scientific Bulletin. 2016;(591):1–12. Retrieved from https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/AN-591-LC-MS-Q-Exactive-Orbitrap-mAb-Rituximab-AN63918-EN.pdf. Accessed 15 April 2019.

  3. Tingting Z, Zhenyu D, Qun X, Rohrer J. High-resolution separation of a fusion protein. Thermo Scientific Bulletin. 2016; 6–8. Retrieved from https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/AB-171-LC-High-Resolution-Fusion-Protein-AN71205-EN.pdf. Accessed 15 April 2019.

  4. Lanshoeft C, Cianférani S, Heudi O. Generic hybrid ligand binding assay liquid chromatography high-resolution mass spectrometry-based workflow for multiplexed human immunoglobulin G1 quantification at the intact protein level: application to preclinical pharmacokinetic studies. Anal Chem. 2017;89(4):2628–35. https://doi.org/10.1021/acs.analchem.6b04997.

    Article  CAS  PubMed  Google Scholar 

  5. Liu H, Gaza-Bulseco G, Zhou L. Mass spectrometry analysis of photo-induced methionine oxidation of a recombinant human monoclonal antibody. J Am Soc Mass Spectrom. 2009;20(3):525–8. https://doi.org/10.1016/j.jasms.2008.11.011.

    Article  CAS  PubMed  Google Scholar 

  6. Ayoub D, Jabs W, Resemann A, Evers W, Evans C, Main L, et al. Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. mAbs. 2013;5(5):699–710. https://doi.org/10.4161/mabs.25423.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kellie JF, Kehler JR, Mencken TJ, Snell RJ, Hottenstein CS. A whole-molecule immunocapture LC-MS approach for the in vivo quantitation of biotherapeutics. Bioanalysis. 2016;8(20):2103–14. https://doi.org/10.4155/bio-2016-0180.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang SW, Crowther J, Jian W. Application of liquid chromatography-high resolution mass spectrometry in the quantification of intact proteins in biological fluids. In: Lee MS, editor. Protein Analysis Using Mass Spectrometry: Accelerating Protein Biotherapeutics from Lab to Patient. Hoboken: John Wiley & Sons Inc; 2017. p. 129–43.

    Chapter  Google Scholar 

  9. Mazur MT, Cardasis HL, Spellman DS, Liaw A, Yates NA, Hendrickson RC. Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. PNAS. 2010;107(17):7728–33. https://doi.org/10.1073/pnas.0910776107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tipton JD, Tran JC, Catherman AD, Ahlf DR, Durbin KR, Kelleher NL. Analysis of intact protein isoforms by mass spectrometry. JBC. 2011;286(29):25451–8. https://doi.org/10.1074/jbc.R111.239442.

    Article  CAS  Google Scholar 

  11. Kellie JF, Tran JC, Lee JE, Ahlf DR, Thomas HM, Ntai I, et al. The emerging process of Top-down mass spectrometry for protein analysis: Biomarkers, protein-therapeutics, and achieving high throughput. Mol BioSyst. 2010;6(9):1532–9. https://doi.org/10.1039/c000896f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramagiri S, Garofolo F. Large molecule bioanalysis using Q-TOF without predigestion and its data processing challenges. Bioanalysis. 2012;4(5):529–40. https://doi.org/10.4155/bio.12.10.

    Article  CAS  PubMed  Google Scholar 

  13. Chiu HH, Tsai IL, Lu YS, Lin CH, Kuo CH. Development of an LC-MS/MS method with protein G purification strategy for quantifying bevacizumab in human plasma. ABC. 2017;409(28):6583–93. https://doi.org/10.1007/s00216-017-0607-0.

    Article  CAS  Google Scholar 

  14. Cong Y, Hu L, Zhang Z, Gao Y, Dong M, Qin H, et al. Analysis of therapeutic monoclonal antibody glycoforms by mass spectrometry for pharmacokinetics study. Talanta (Oxford). 2017;165:664–70. https://doi.org/10.1016/j.talanta.2017.01.023.

    Article  CAS  Google Scholar 

  15. Jian W, Kang L, Burton L, Weng N. A workflow for absolute quantitation of large therapeutic proteins in biological samples at intact level using LC-HRMS. Bioanalysis. 2016;8(16):1679–91. https://doi.org/10.4155/bio-2016-0096.

    Article  CAS  PubMed  Google Scholar 

  16. O’Flaherty R, Trbojević-Akmačić I, Greville G, Rudd PM, Lauc G. The sweet spot for biologics: recent advances in characterization of biotherapeutic glycoproteins. Expert Rev Proteom. 2018;15(1):13–29. https://doi.org/10.1080/14789450.2018.1404907.

    Article  CAS  Google Scholar 

  17. Zell M, Husser C, Staack RF, Jordan G, Richter WF, Schadt S, et al. In vivo biotransformation of the fusion protein tetranectin-apolipoprotein A1 analyzed by ligand-binding mass spectrometry combined with quantitation by ELISA. Anal Chem (Washington). 2016;88(23):11670–7. https://doi.org/10.1021/acs.analchem.6b03252.

    Article  CAS  Google Scholar 

  18. Bechler S, Cook K, Flook K. Monoclonal antibody analysis on a reversed-phase C4 polymer monolith column. Thermo Scientific Bulletin, 2016. Retrieved from: https://assets.ther-mofisher.com/TFS-Assets/CMD/Application-Notes/AN-21163-LC-ProSwift-C4-RP-5H-Monoclonal-Antibody-AN21163-EN.pdf. Accessed 15 April 2019.

  19. Kellie JF, Kehler JR, Karlinsey MZ, Summerfield SG. Toward best practices in data processing and analysis for intact biotherapeutics by MS in quantitative bioanalysis. Bioanalysis. 2017;9(23):1883–93. https://doi.org/10.4155/bio-2017-0179.

    Article  CAS  PubMed  Google Scholar 

  20. Su Ng C, Khosraviani M, Yu SF, Cosino E, Kaur S, et al. Custom-designed affinity capture LC-MS F(ab′)2 assay for biotransformation assessment of site-specific antibody drug conjugates. Anal Chem (Washington). 2016;88(23):11340–6. https://doi.org/10.1021/acs.analchem.6b03410.

    Article  CAS  Google Scholar 

  21. Genentech. Avastin: highlights of prescribing information. 2004. Retrieved from: https://www.gene.com/download/pdf/avastin_prescribing.pdf. Accessed 05 Nov 2017.

  22. Genentech. Lucentis: highlights of prescribing information. 2006. Retrieved from: https://www.gene.com/download/pdf/lucentis_prescribing.pdf. Accessed 05 Nov 2017.

  23. DelGuidice CE, Ismaiel OA, Mylott WR, Halquist MS. Optimization and method validation for the quantitative analysis of a monoclonal antibody and its related fab fragment in human plasma after intravitreal administration, using LC–MS/MS. J Chrom B. 2021;1164:122474–122474.

    Article  CAS  Google Scholar 

  24. Qiu X, Kang L, Case M, Weng N, Jian W. Quantitation of intact monoclonal antibody in biological samples: comparison of different data processing strategies. Bioanalysis. 2018;10(13):1055–67. https://doi.org/10.4155/bio-2018-0016.

    Article  CAS  PubMed  Google Scholar 

  25. Iwamoto N, Umino Y, Aoki C, Yamane N, Hamada A, Shimada T. Fully validated LCMS bioanalysis of bevacizumab in human plasma using nano-surface and molecular-orientation limited (nSMOL) proteolysis. DrugMetab Pharmacokinet. 2016;31(1):46–50.

    Article  CAS  Google Scholar 

  26. Jin W, Burton L, Moore I. LC-HRMS quantitation of intact antibody drug conjugate trastuzumab emtansine from rat plasma. Bioanalysis. 2018;10(11):851–62. https://doi.org/10.4155/bio-2018-0003.

    Article  CAS  PubMed  Google Scholar 

  27. Ruan Q, Ji QC, Arnold ME, Humphreys WG, Zhu M. Strategy and its implications of protein bioanalysis utilizing high-resolution mass spectrometric detection of intact protein. Anal Chem. 2011;83(23):8937–44. https://doi.org/10.1021/ac201540t.

    Article  CAS  PubMed  Google Scholar 

  28. Kellie JF, Higgs RE, Ryder JW, Major A, Beach TG, Adler CH, et al. Quantitative measurement of intact alpha-synuclein proteoforms from post-mortem control and parkinson’s disease brain tissue by intact protein mass spectrometry. Sci Rep. 2014;4(1):5797–5797. https://doi.org/10.1038/srep05797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cox JM, Berna MJ, Jin Z, Cox AL, Sloop KW, Gutierrez JA, et al. Characterization and quantification of oxyntomodulin in human and rat plasma using high-resolution accurate mass LC-MS. Bioanalysis. 2016;8(15):1579–95. https://doi.org/10.4155/bio-2016-0012.

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Wang H, Hao Z, Bennett P, Kilby G. Bioanalytical quantitation of biotherapeutics using intact protein vs. proteolytic peptides by LC-HR / AM on a Q exactive MS. Thermo Scientific Bulletin, 2013. Retrieved from: http://apps.thermoscientific.com/media/cmd/ASMS-TNG-Roadshow/TNG/resouces/834_PN_ASMS13_T214_JChen.pdf. Accessed 15 April 2019.

  31. Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br J Ophthalmol. 2014;98(12):1636–41.

    Article  Google Scholar 

  32. Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina (Philadelphia, Pa). 2017;37(10):1847–58.

    Article  CAS  Google Scholar 

  33. Lowe J, Wakshull E, Shek T, Chuntharapai A, Elliott R, Rusit J, et al. Development and validation of a novel semi-homogenous clinical assay for quantitation of ranibizumab in human serum. J Immunol Methods. 2018;461:44–52.

    Article  CAS  Google Scholar 

  34. DelGuidice CE, Ismaiel OA, Mylott WR, Halquist MS. Quantitative bioanalysis of intact large molecules using mass spectrometry. JAB. 2020;6(1):52–64.

    Article  Google Scholar 

  35. Zhang L, Vasicek LA, Hsieh S, Zhang S, Bateman KP, Henion J. Top-down LC-MS quantitation of intact denatured and native monoclonal antibodies in biological samples Special focus issue on Protein therapeutics & target quantification by LC-MS. Bioanalysis. 2018;10(13):1039–54. https://doi.org/10.4155/bio-2017-0282.

    Article  CAS  PubMed  Google Scholar 

  36. Bults P, Sonesson A, Knutsson M, Bischoff R, van de Merbel NC. Intact protein quantification in biological samples by liquid chromatography – high-resolution mass spectrometry: somatropin in rat plasma. J Chrom B. 2020;1144:122079–122079. https://doi.org/10.1016/j.jchromb.2020.122079.

    Article  CAS  Google Scholar 

  37. Ménard C, Rezende FA, Miloudi K, Wilson A, Tétreault N, Hardy P, et al. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget. 2016;7(15):19171–84. https://doi.org/10.18632/oncotarget.8280.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Carnevale C, Manni G, Roberti G, Micera A, Bruno L, Cacciamani A, et al. Human vitreous concentrations of citicoline following topical application of citicoline 2% ophthalmic solution. PloS One. 2019;14(11):e0224982–e0224982. https://doi.org/10.1371/journal.pone.0224982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferreira MS, Marquez CR, dos Santos DA, Gabbai JJ, Martho AC, Yamanouchi Brandão AH, et al. Validation of direct method to quantify dexamethasone in human aqueous humor by LC-MS/MS. Bioanalysis. 2018;10(17):1361–70. https://doi.org/10.4155/bio-2018-0079.

    Article  CAS  PubMed  Google Scholar 

  40. ProteinSimple R&D Systems. Human vascular endothelial growth factor a specification sheet. 2015. Retrieved from: https://www.proteinsimple.com/documents/VEGF-A_Specification_Sheet_D10-1015-001.pdf. Accessed 05 Nov 2017.

  41. Zehetner C, Kirchmair R, Huber S, Kralinger M, Kieselbach G. Plasma levels of vascular endothelial growth factor before and after intravitreal injection of bevacizumab, ranibizumab and pegaptanib in patients with age-related macular degeneration, and in patients with diabetic macular edema. Br J Ophthalmol. 2013;97(4):454–9.

    Article  Google Scholar 

  42. Yoshida I, Shiba T, Taniguchi H, Takahashi M, Murano T, Hiruta N, et al. Evaluation of plasma vascular endothelial growth factor levels after intravitreal injection of ranibizumab and aflibercept for exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2014;252(9):1483–9.

    Article  CAS  Google Scholar 

  43. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25(1):21–50. https://doi.org/10.1146/annurev.immunol.25.022106.141702.

    Article  CAS  PubMed  Google Scholar 

  44. Thuy TT, Thorsén G. Glycosylation profiling of therapeutic antibodies in serum samples using a microfluidic CD platform and MALDI-MS. J Am Soc Mass Spectrom. 2013;24(7):1053–63. https://doi.org/10.1007/s13361-013-0623-z.

    Article  CAS  PubMed  Google Scholar 

  45. Rimpelä AK, Kiiski I, Deng F, Kidron H, Urtti A. Pharmacokinetic simulations of intravitreal biologicals: aspects of drug delivery to the posterior and anterior segments. Pharmaceutics. 2018;11(1):9.

    Article  Google Scholar 

  46. Krohne TU, Eter N, Holz FG, Meyer CH. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol. 2008;146(4):508–12.

    Article  CAS  Google Scholar 

  47. Krohne TU, Liu Z, Holz FG, Meyer CH. Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am J Ophthalmol. 2012;154(4):682-686.e2.

    Article  CAS  Google Scholar 

  48. Niwa Y, Kakinoki M, Sawada T, Wang X, Ohji M. Ranibizumab and aflibercept: intraocular pharmacokinetics and their effects on aqueous VEGF level in vitrectomized and nonvitrectomized macaque eyes. IOVS. 2015;56(11):6501–5.

    CAS  Google Scholar 

  49. Dickmann LJ, Yip V, Li C, Abundes J, Maia M, Young C, et al. Evaluation of fluorophotometry to assess the vitreal pharmacokinetics of protein therapeutics. IOVS. 2015;56(11):6991–9.

    CAS  Google Scholar 

  50. Zhu Q, Ziemssen F, Henke-Fahle S, Tatar O, Szurman P, Aisenbrey S, et al. Vitreous levels of bevacizumab and vascular endothelial growth factor-a in patients with choroidal neovascularization. Ophthalmology (Rochester, Minn). 2008;115(10):1750-1755.e1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Virginia Commonwealth University School of Pharmacy and Pharmaceutical Product Development’s Bioanalytical Laboratories in Richmond, VA, for their academic expertise. The authors would also like to extend a special thanks to Diane Lebarbenchon for her help in grammatical and formatting editing.

Funding

This study was supported by Virginia Commonwealth University School of Pharmacy and Pharmaceutical Product Development’s Bioanalytical Laboratories in Richmond, VA.

Rabbit vitreous humor, human vitreous humor, and human aqueous humor were collected ethically within FDA standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. DelGuidice.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DelGuidice, C.E., Ismaiel, O.A., Mylott, W.R. et al. Intact quantitative bioanalytical method development and fit-for-purpose validation of a monoclonal antibody and its related fab fragment in human vitreous and aqueous humor using LC-HRMS. Anal Bioanal Chem 414, 4189–4202 (2022). https://doi.org/10.1007/s00216-022-04071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04071-x

Keywords

Navigation