Skip to main content
Log in

Cu3(PO4)2/BiVO4 photoelectrochemical sensor for sensitive and selective determination of synthetic antioxidant propyl gallate

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Propyl gallate (PG) as one of the most important additives has been widely used to prevent or slow the oxidation of foods in the food industry. In this work, Cu3(PO4)2/BiVO4 composite is synthesized through two hydrothermal processes. With visible light irradiation, the Cu3(PO4)2/BiVO4 composites modified PEC platform displays a superior anode photocurrent signal. The PEC sensor showed a wide linear range from 1 × 10−10 to 1 × 10−3 mol L−1 with a detection limit as low as 0.05 × 10−10 mol L−1. The Cu3(PO4)2/BiVO4 photoelectrochemical (PEC) sensor is designed and characterized by electrochemical impedance. Compared with GCE/BiVO4 and GCE/Cu3(PO4)2, the GCE/Cu3(PO4)2/BiVO4 has a higher photocurrent response. In addition, the sensor is highly selective for samples containing other antioxidants. Furthermore, the sensor can be used to detect PG in edible oil samples with satisfactory results. The recoveries of propyl gallate in edible oil ranged from 95.5 to 101.8%. The results show that Cu3(PO4)2/BiVO4 composites can be used to analyze PG in different edible oil samples, which are beneficial for food quality monitoring and reduce the risk of PG overuse in food.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Devadoss A, Sudhagar P, Terashima C, Nakata K, Fujishima A. Photoelectrochemical biosensors: new insights into promising photoelectrodes and signal amplification strategies. J Photoche Photobio C. 2015;24:43–63.

    Article  CAS  Google Scholar 

  2. Yue XY, Liu LZ, Li ZH, Yang QF, Zhu WX, Zhang WT, Wang JL. Highly specific and sensitive determination of propyl gallate in food by a novel fluorescence sensor. Food Chem. 2018;256:45–52.

    Article  CAS  Google Scholar 

  3. Xu GL, Chi Y, Li L, Liu SH, Kan XW. Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol-gel film. Food Chem. 2015;177:37–42.

    Article  CAS  Google Scholar 

  4. Han FJ, Song ZQ, Nawaz M, Dai MJ, Han DF, Han LP, Fan YY, Xu JN, Han DX, Niu L. MoS2/ZnO-Heterostructures-based label-free, visible-light-excited photoelectrochemical sensor for sensitive and selective determination of synthetic antioxidant propyl gallate. Anal Chem. 2019;91:10657–1622.

    Article  CAS  Google Scholar 

  5. Sin D, Wong YC, Mak C, Sze S, Yao WY. Determination of five phenolic antioxidants in edible oils: Method validation and estimation of measurement uncertainty. J Food Compos Anal. 2006;19:784–91.

    Article  CAS  Google Scholar 

  6. Wang MQ, Ye C, Mo S, Liao LL, Zhang XF, Ling Y, Lu L, Luo HQ, Li NB. A novel “signal-on” photoelectrochemical sensor for ultrasensitive detection of alkaline phosphatase activity based on a TiO2/g-C3N4 heterojunction. Analyst. 2018;143:3399–407.

    Article  CAS  Google Scholar 

  7. Wang HY, Zhu LB, Duan JL, Wang MH, Yin HS, Wang P, Ai SY. Photoelectrochemical biosensor for HEN1 RNA methyltransferase detection using peroxidase mimics PtCu NFs and poly(U) polymerase-mediated RNA extension. Biosens Bioelectron. 2018;103:32–8.

    Article  Google Scholar 

  8. Liu LM, Li SC, Cheng HZ, Diebold U, Selloni A. Growth and organization of an organic molecular mono layer on TiO2: catechol on anatase (101). JACS. 2011;133:7816–23.

    Article  CAS  Google Scholar 

  9. Vikraman A, Rasheed Z, Rajith L, Lonappan L, Krishnapillai G. MWCNT-modified gold electrode sensor for the determination of propyl gallate in vegetable oils. Food Anal Meth. 2013;6:775–80.

    Article  Google Scholar 

  10. Zhang T, Lu YM, Wang J, Wang ZQ, Zhang WS, Wang XY, Su JZ, Guo LJ. Growth of NiMn layered double hydroxides on nanopyramidal BiVO4 photoanode for enhanced photoelectrochemical performance. Nanotechnology. 2020;31:115707.

    Article  CAS  Google Scholar 

  11. Lei MY, Liu J, Huang YB, Dong YL, Zhou SY, Zhao HP, Wang ZJ, Wu MH, Lei Y, Wang ZG. The optimization of optical modes in Ni-BiVO4 nanoarrays for boosting photoelectrochemical water splitting. Nanotechnology. 2019;30:445403.

    Article  CAS  Google Scholar 

  12. Sun SM, Wang WZ, Zhang L. Bi2WO6 quantum dots decorated reduced graphene oxide: improved charge separation and enhanced photoconversion efficiency. J Phys Chem C. 2013;117:9113–20.

    Article  CAS  Google Scholar 

  13. Sun YF, Qu BY, Liu Q, Gao S, Yan ZX, Yan WS, Pan BC, Wei SQ, Xie Y. Highly efficient visible-light-driven photocatalytic activities in synthetic ordered monoclinic BiVO4 quantum tubes-graphene nanocomposites. Nanoscale. 2012;4:3761–7.

    Article  CAS  Google Scholar 

  14. Ge J, Lei JD, Zare R. Protein-inorganic hybrid nanoflowers. Nat Nanotech. 2012;7:428–32.

    Article  CAS  Google Scholar 

  15. Wei TX, Du D, Zhu MJ, Lin YH, Dai ZH. An improved ultrasensitive enzyme-linked immunosorbent assay using hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites. ACS Appl Mater Inter. 2016;8:6329–35.

    Article  CAS  Google Scholar 

  16. Zhong GM, Bai JY, Duchesne P, Mc D, Li Q, Hou X, Tang J, Wang Y, Zhao WG, Gong ZL, Zhang P, Fu RQ, Yang Y. Copper phosphate as a cathode material for rechargeable Li batteries and its electrochemical reaction mechanism. Chem Mater. 2015;27:5736–44.

    Article  CAS  Google Scholar 

  17. Bard HK. A Semiconductor electrodes X: photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. J Electrochem Soc. 1977;124:215–24.

    Article  Google Scholar 

  18. Shi L, Yin Y, Zhang LC, Wang SB, Mika S, Sun HQ. Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: a review. Appl Catal B Environ. 2019;248:405–22.

    Article  CAS  Google Scholar 

  19. Ye C, Wang MQ, Li LJ, Luo HQ, Li NB. Fabrication of Pt/Cu3(PO4)2 ultrathin nanosheet heterostructure for photoelectrochemical microRNA sensing using novel G-wire-enhanced strategy. Nanoscale. 2019;9:7526–32.

    Article  Google Scholar 

  20. Wang MQ, Ye C, Bao SJ, Zhang Y, Xu MW, Li Z. Bimetal-organic-frameworks-derived yolk-shell-structured porous Co2P/ZnO@PC/CNTs hybrids for highly sensitive non-enzymatic detection of superoxide anion released from living cells. Chem Commun. 2016;52:12442–5.

    Article  CAS  Google Scholar 

  21. Ye C, Wang MQ, Li LJ, Luo HQ, Li NB. Label-free photoelectrochemical “off−on” platform coupled with G-wire-enhanced strategy for highly sensitive microRNA sensing in cancer cells. Anal Chem. 2017;89:11697–702.

    Article  CAS  Google Scholar 

  22. Wang HL, Zhang LS, Chen ZG, Hu JQ, Li SJ, Wang ZH, Liu JS, Wang XC. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev. 2014;43:5234–44.

    Article  CAS  Google Scholar 

  23. Nanda K, Maisels A, Kruis F, Fissan H, Stappert S. Higher surface energy of free nanoparticles. Phys Rev Lett. 2003;91:106102.

    Article  CAS  Google Scholar 

  24. Marcano D, Kosynkin D, Berlin J, Sinitskii A, Sun Z, Slesarev A, Alemany L, Lu W, Tour J. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–14.

    Article  CAS  Google Scholar 

  25. Wang QA, Zhu HM, Li B. Synergy of Ti-O-based heterojunction and hierarchical 1D nanobelt/3D microflower heteroarchitectures for enhanced photocatalytic tetracycline degradation and photoelectrochemical water splitting. Chem Eng J. 2019;378:122072.

    Article  CAS  Google Scholar 

  26. Li J, Gao X, Liu B, Feng QL, Li XB, Huang M, Liu Z, Zhang J, Tung CH, Wu LZ. Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for Hydrogen Production. J Am Chem Soc. 2016;138:3954–7.

    Article  CAS  Google Scholar 

  27. Wood P, Glasser FP. Preparation and properties of pigmentary grade BiVO4 precipitated from aqueous solution. J Alloy Comp. 2003;30:875–82.

    Google Scholar 

  28. Zhang LX, Li P, Feng LP, Chen X, Jiang JT, Zhang S, Zhang CX, Zhang AC, Chen GF, Wang H. Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: a visible light-driven photoelectrochemical sensor for the “signal-on” analysis of mercury (II). J Hazard Mater. 2020;387:12171.

    Google Scholar 

  29. Hao N, Hua R, Zhang K, Lu JW, Wang K. A sunlight powered portable photoelectrochemical biosensor based on a potentiometric resolve ratiometric principle. Anal Chem. 2018;90:13207–11.

    Article  CAS  Google Scholar 

  30. Xie MZ, Fu XD, Jing LQ, Luan P, Feng YJ, Fu HG. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv Energy Mater. 2014;4:1300995.

    Article  Google Scholar 

  31. Yang JL, Shi QJ, Zhang R, Xie MZ, Jiang X, Wang FC, Cheng XW, Han WH. BiVO4 quantum tubes loaded on reduced graphene oxide aerogel as efficient photocatalyst for gaseous formaldehyde degradation. Carbon. 2018;138:118–24.

    Article  CAS  Google Scholar 

  32. Li ZJ, Qu Y, Hu K, Humayun M, Chen SY, Jing LQ. Improved photoelectrocatalytic activities of BiOCl with high stability for water oxidation and MO degradation by coupling RGO and modifying phosphate groups to prolong carrier lifetime. Appl Catal B Environ. 2017;203:355–62.

    Article  CAS  Google Scholar 

  33. Tran P, Batabyal S, Pramana S, Barber J, Wong L, Loo S. A cuprous oxide–reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Nanoscale. 2012;4:3875–8.

    Article  CAS  Google Scholar 

  34. Xu DF, Li LL, He RA, Qi LF, Zhang LY, Cheng B. Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance. Appl Surf Sci. 2018;434:620–5.

    Article  CAS  Google Scholar 

  35. Jing LQ, Zhou W, Tian GH, Fu HG. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem Soc Rev. 2013;42:9509–49.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21904116), Natural Science Foundation of Zhejiang Provincial (Y22B057794), and the China Postdoctoral Science Foundation (2021M692863).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui Ye or Minqiang Wang.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.50 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Xu, S., Wu, Z. et al. Cu3(PO4)2/BiVO4 photoelectrochemical sensor for sensitive and selective determination of synthetic antioxidant propyl gallate. Anal Bioanal Chem 414, 4139–4147 (2022). https://doi.org/10.1007/s00216-022-04065-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04065-9

Keywords

Navigation