Skip to main content
Log in

Amplified electrochemical determination of niclosamide in food based on carbon nanohorn@MWCNT composite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, carbon nanohorn (CNH)–decorated multi-walled carbon nanotube (MWCNT) (CNH@MWCNT) composite was prepared and used to modify glass carbon electrode (GCE) as sensitive electrochemical sensor for niclosamide (NA) determination. Herein, the decoration of CNHs induces higher dispersibility for MWCNTs, and endows the composite with better conductivity, larger surface area, and higher catalytic activity, which leads to significantly enhanced electrochemical behavior toward NA oxidation. The parameters such as mass ratios of CNHs and MWCHTs, the amount of composite materials, the accumulation time, and the solution pH are systematically optimized. Under optimized conditions, the developed electrochemical sensor exhibits a low detection limit of 2.0 nM with a wide linear range of 7.0 nM–10.0 µM and high anti-interference ability. In addition, the sensor displays good stability, repeatability, and reproducibility. The feasibility of the assay was verified by testing NA in brown rice and rice field water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Kadri H, Article OA, Mehellou Y. Niclosamide, a drug with many (re)purposes. Chem Med Chem. 2018;13:287–288.

    Article  Google Scholar 

  2. Oliveira-Filho EC, Paumgartten FJR. Toxicity of Euphorbia milii latex and niclosamide to snails and nontarget aquatic species. Ecotoxicol Environ Saf. 2000;46(3):342–50.

    Article  CAS  Google Scholar 

  3. Zhu B, He W, Yang F, Chen L. High-throughput transcriptome sequencing reveals the developmental toxicity mechanisms of niclosamide in zebrafish embryo. Chemosphere. 2020;244:125468–78.

    Article  CAS  Google Scholar 

  4. Xu J, Shi P, Li H, Zhou J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. Acs Infect Dis. 2020;6(5):909–15.

    Article  CAS  Google Scholar 

  5. Zhurina MV, Gannesen AV, Mart Yanov SV, Teteneva NA, Shtratnikova VY, Plakunov VK. Niclosamide as a promising antibiofilm agent. Microbiology. 2017;86(4):455–62.

    Article  CAS  Google Scholar 

  6. Xu J, Berastegui-Cabrera J, Chen H, Pachón J, Zhou J, Sánchez-Céspedes J. Structure-activity relationship studies on diversified salicylamide derivatives as potent inhibitors of human adenovirus infection. J Med Chem. 2020;63(6):3142–60.

    Article  CAS  Google Scholar 

  7. Choi H, Kim T, Lee S, Kim W, Noh Y, Kim G, et al. Bioanalysis of niclosamide in plasma using liquid chromatography-tandem mass and application to pharmacokinetics in rats and dogs. J Chromatogr A. 2021;1179:122862–70.

    CAS  Google Scholar 

  8. Zhurina MV, Gannesen AV, Mart Yanov SV, Teteneva NA, Shtratnikova VY, Plakunov VK. Niclosamide as a promising antibiofilm agent. Microbiology (New York). 2017;86(4):455–62.

    CAS  Google Scholar 

  9. Kartalović B, Pucarević M, Marković Z, Stanković M, Novakov N, Pelić M, et al. Determination of niclosamide and its metabolites in liver and muscles of common carp (Cyprinus carpio) fingerlings. Acta Sci Vet. 2017;45(1):6–11.

    Article  Google Scholar 

  10. Li F, Liu R, Dubovyk V, Ran Q, Li B, Chang Y, et al. Three-dimensional hierarchical porous carbon coupled with chitosan based electrochemical sensor for sensitive determination of niclosamide. Food Chem. 2022;366:130563–71.

    Article  CAS  Google Scholar 

  11. Ghalkhani M, Shahrokhian S. Application of carbon nanoparticle/chitosan modified electrode for the square-wave adsorptive anodic striping voltammetric determination of Niclosamide. Electrochem Commun. 2010;12(1):66–9.

    Article  CAS  Google Scholar 

  12. Zhang Z, Yao Y, Xu J, Wen Y, Zhang J, Ding W. Nanohybrid sensor based on carboxyl functionalized graphene dispersed palygorskite for voltammetric determination of niclosamide. Appl Clay Sci. 2017;143:57–66.

    Article  CAS  Google Scholar 

  13. Yi YF, Wang P, Fan GR, Wang ZD, Xue T, Wen YP, et al. Hierarchically porous carbon microsphere doped with phosphorus as a high conductive electrocatalyst for oxidase-like sensors and supercapacitors. ACS Sustain Chem Eng. 2020;8(26):9937–46.

    Article  CAS  Google Scholar 

  14. Gao C, Guo Z, Liu J, Huang X. The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale. 2012;4(6):1948–63.

    Article  CAS  Google Scholar 

  15. Zhong W, Gao F, Zou J, Liu S, Li M, Gao Y, et al. MXene@Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples. Food Chem. 2021;360:130006–1300012.

    Article  CAS  Google Scholar 

  16. Chen J, Zhu Y, Jiang W. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Compos Sci Technol. 2020;186:107938–45.

    Article  CAS  Google Scholar 

  17. Lavagna L, Nisticò R, Musso S, Pavese M. Functionalization as a way to enhance dispersion of carbon nanotubes in matrices: a review. Mater Today Chem. 2021;20:100477–93.

    Article  CAS  Google Scholar 

  18. Ghalkhani M, Shahrokhian S, Navabi M. Development of an electrochemical sensor based on (rGO-CNT) nanocomposite for raloxifene analysis. Mater Chem Phys. 2021;263:124131–123141.

    Article  CAS  Google Scholar 

  19. Wang L, Hu D, Kong X, Liu J, Li X, Zhou H, et al. Anionic polypeptide poly(γ-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd(II), Cu(II) and Ni(II) heavy metal ions. Chem Eng J. 2018;346:38–49.

    Article  CAS  Google Scholar 

  20. Mani V, Dinesh B, Chen S, Saraswathi R. Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite. Biosens Bioelectron. 2014;53:420–7.

    Article  CAS  Google Scholar 

  21. Bricha M, El Mabrouk K. Effect of surfactants on the degree of dispersion of MWNTs in ethanol solvent. Colloid Surface A. 2019;561:57–69.

    Article  CAS  Google Scholar 

  22. Shi L, Zhang D, Zhao JF, Yin MN, Liang AP, Ghosh S. Small organic molecules act as a trigger in an “unzippering” mechanism to facilitate carbon nanotube dispersion. Sci Total Environ. 2021;758–65.

  23. Rennhofer H, Zanghellini B. Dispersion state and damage of carbon nanotubes and carbon nanofibers by ultrasonic dispersion: a review. Nanomaterials-Basel. 2021;11(6):1469–96.

    Article  CAS  Google Scholar 

  24. Liu X, Ying Y, Ping J. Structure, synthesis, and sensing applications of single-walled carbon nanohorns. Biosens Bioelectron. 2020;167:112495–507.

    Article  CAS  Google Scholar 

  25. Zheng W, Liu Y, Yang P, Chen Y, Tao J, Hu J, et al. Carbon nanohorns enhanced electrochemical properties of Cu-based metal-organic framework for ultrasensitive serum glucose sensing. J Electroanal Chem. 2020;862:114018–25.

    Article  CAS  Google Scholar 

  26. Tu X, Gao F, Ma X, Zou J, Yu Y, Li M, et al. Mxene/carbon nanohorn/β-cyclodextrin-metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. J Hazard Mater. 2020;396:122776–84.

    Article  CAS  Google Scholar 

  27. Jorio A, Saito R. Raman spectroscopy for carbon nanotube applications. J Appl Phys. 2021;129(2):21102–28.

    Article  CAS  Google Scholar 

  28. Kim J, Kim J. Monolithically integrated enhancement-mode and depletion-mode #-Ga2O3 MESFETs with graphene gate architectures and their logic applications. ACS Appl Mater Inter. 2020;12(6):7310–6.

    Article  Google Scholar 

  29. Aryee E, Dalai AK, Adjaye J. Functionalization and characterization of carbon nanohorns (CNHs) for hydrotreating of gas oils. Top Catal. 2014;57(6–9):796–805.

    Article  CAS  Google Scholar 

  30. Wen BY, Chen QQ, Radjenovic PM, Dong JC, Tian ZQ, Li JF. In situ surface-enhanced raman spectroscopy characterization of electrocatalysis with different nanostructures. Annu Rev Phys Chem. 2021;72:331–51.

    Article  CAS  Google Scholar 

  31. Gao F, Yan Z, Duan X, Cai Y, Yang J, Zhong W et al. 2D leaf like ZIF L decorated with multi-walled carbon nanotubes as electrochemical sensing platform for sensitively detecting thiabendazole pesticide residues in fruit samples. Anal Bioanal Chem. 2021;413:7485–7494.

  32. Yao Y, Zhang L, Duan X, Xu J, Zhou W, Wen Y. Differential pulse striping voltammetric determination of molluscicide niclosamide using three different carbon nanomaterials modified electrodes. Electrochim Acta. 2014;127:86–94.

  33. Liu Y, Li H, Gong S, Chen Y, Xie R, Wu Q et al. A novel non-enzymatic electrochemical biosensor based on the nanohybrid of bimetallic PdCu nanoparticles/carbon black for highly sensitive detection of H2O2 released from living cells. Sens. Actuators B-Chem. 2019;290:249–257.

  34. Mariyappan V, Keerthi M, Chen S. Highly Selective Electrochemical Sensor Based on Gadolinium Sulfide Rod-Embedded RGO for the Sensing of Carbofuran. J Agric Food Chem. 2021;69(9):2679–2688.

  35. Yao Y, Wen Y, Zhang W, Wang Z, Zhang H, Xu J et al. Electrochemical recognition and trace-level detection of bactericide carbendazim using carboxylic group functionalized poly(3,4-ethylenedioxythiophene) mimic electrode. Anal Chim Acta. 2014;831:38–49.

  36. Wang Z, Xu J, Yao Y, Zhang L, Wen Y, Song H et al. Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sens. Actuators B-Chem. 2014;196:357–369.

  37. Zhao H, Chang Y, Liu R, Li B, Li F, Zhang F et al. Facile synthesis of Vulcan XC-72 nanoparticles-decorated halloysite nanotubes for the highly sensitive electrochemical determination of niclosamide. Food Chem. 2021;343:128484–128491.

Download references

Funding

We received financial support for this work from the National Natural Science Foundation of China ( 51862014, 22064010, and 51762020), the Natural Science Foundation of Jiangxi Province (20202ACBL213009 and 20212BAB203019), the Open Project of Engineering Center of Jiangxi University for Fine Chemicals (No. KFGJ18018), and the Jiangxi Provincial Key Laboratory of Drug Design and Evaluation (20171BCD40015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemin Duan or Limin Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 332 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Xue, S., Xu, J. et al. Amplified electrochemical determination of niclosamide in food based on carbon nanohorn@MWCNT composite. Anal Bioanal Chem 414, 4119–4127 (2022). https://doi.org/10.1007/s00216-022-04060-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04060-0

Keywords

Navigation