Abstract
The traditional manual analysis of microplastics has been criticized for its labor-intensive, inaccurate identification of small microplastics, and the lack of uniformity. There are already three automated analysis strategies for microplastics based on vibrational spectroscopy: laser direct infrared (LDIR)–based particle analysis, Raman-based particle analysis, and focal plane array-Fourier transform infrared (FPA-FTIR) imaging. We compared their performances in terms of quantification, detection limit, size measurement, and material identification accuracy and speed by analyzing the same standard and environmental samples. LDIR-based particle analysis provides the fastest analysis speed, but potentially questionable material identification and quantification results. The number of particles smaller than 60 μm recognized by LDIR-based particle analysis is much less than that recognized by Raman-based particle analysis. Misidentification could occur due to the narrow tuning range from 1800 to 975 cm−1 and dispersive artifact distortion of infrared spectra collected in reflection mode. Raman-based particle analysis has a submicrometer detection limit but should be cautiously used in the automated analysis of microplastics in environmental samples because of the strong fluorescence interference. FPA-FTIR imaging provides relatively reliable quantification and material identification for microplastics in environmental samples greater than 20 μm but might provide an imprecise description of the particle shapes. Optical photothermal infrared (O-PTIR) spectroscopy can detect submicron-sized environmental microplastics (0.5–5 μm) intermingled with a substantial amount of biological matrix; the resulting spectra are searchable in infrared databases without the influence of fluorescence interference, but the process would need to be fully automated.
Graphical abstract

This is a preview of subscription content, access via your institution.






Data availability
The authors declare that all the data supporting the findings of this study are available within the article. Further information and requests for samples and resources should be directed to and will be fulfilled by the Lead Contact, Mingtan Dong (hegu@cug.edu.cn).
References
Lim X. Microplastics are everywhere - but are they harmful? Nature. 2021;593(7857):22–5. https://doi.org/10.1038/d41586-021-01143-3.
Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, Gerdts G. White and wonderful microplastics prevail in snow from the Alps to the Arctic. Sci Adv. 2019;5:10. https://doi.org/10.1126/sciadv.aax1157.
Fred-Ahmadu OH, Bhagwat G, Oluyoye I, Benson NU, Ayejuyo OO, Palanisami T. Interaction of chemical contaminants with microplastics: principles and perspectives. Sci Total Environ. 2020;706:135978. https://doi.org/10.1016/j.scitotenv.2019.135978.
Prata JC, da Costa JP, Duarte AC, Rocha-Santos T. Methods for sampling and detection of microplastics in water and sediment: a critical review. TrAC Trends Anal Chem. 2019;110:150–9. https://doi.org/10.1016/j.trac.2018.10.029.
Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100(1):82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026.
Hitchcock JN, Mitrovic SM. Microplastic pollution in estuaries across a gradient of human impact. Environ Pollut. 2019;247:457–66. https://doi.org/10.1016/j.envpol.2019.01.069.
Lenaker PL, Baldwin AK, Corsi SR, Mason SA, Reneau PC, Scott JW. Vertical distribution of microplastics in the water column and surficial sediment from the Milwaukee River Basin to Lake Michigan. Environ Sci Technol. 2019;53(21):12227–37. https://doi.org/10.1021/acs.est.9b03850.
Löder MGJ, Gerdts G. Methodology used for the detection and identification of microplastics—a critical appraisal. In: Marine Anthropogenic Litter; 2015. p. 201–227. https://doi.org/10.1007/978-3-319-16510-3_8.
Chae Y, Kim D, An YJ. Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: focusing on the algal cell to plastic particle size ratio. Aquat Toxicol. 2019;216:105296. https://doi.org/10.1016/j.aquatox.2019.105296.
Zarfl C. Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Anal Bioanal Chem. 2019;411(17):3743–56. https://doi.org/10.1007/s00216-019-01763-9.
Schymanski D, Ossmann BE, Benismail N, Boukerma K, Dallmann G, von der Esch E, Fischer D, Fischer F, Gilliland D, Glas K, Hofmann T, Kappler A, Lacorte S, Marco J, Rakwe ME, Weisser J, Witzig C, Zumbulte N, Ivleva NP. Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines. Anal Bioanal Chem. 2021. https://doi.org/10.1007/s00216-021-03498-y.
Primpke S, Christiansen SH, Cowger W, De Frond H, Deshpande A, Fischer M, Holland EB, Meyns M, O’Donnell BA, Ossmann BE, Pittroff M, Sarau G, Scholz-Böttcher BM, Wiggin KJ. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics. Appl Spectrosc. 2020;74(9):1012–47. https://doi.org/10.1177/0003702820921465.
Li Q, Zeng A, Jiang X, Gu X. Are microplastics correlated to phthalates in facility agriculture soil? J Hazard Mater. 2021;412:125164. https://doi.org/10.1016/j.jhazmat.2021.125164.
Ossmann BE, Sarau G, Schmitt SW, Holtmannspotter H, Christiansen SH, Dicke W. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy. Anal Bioanal Chem. 2017;409(16):4099–109. https://doi.org/10.1007/s00216-017-0358-y.
da Silva VH, Murphy F, Amigo JM, Stedmon C, Strand J. Classification and quantification of microplastics (< 100 mu m) using a focal plane array-Fourier transform infrared imaging system and machine learning. Anal Chem. 2020;92(20):13724–33. https://doi.org/10.1021/acs.analchem.0c01324.
Tagg AS, Sapp M, Harrison JP, Ojeda JJ. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem. 2015;87(12):6032–40. https://doi.org/10.1021/acs.analchem.5b00495.
Primpke S, Godejohann M, Gerdts G. Rapid identification and quantification of microplastics in the environment by quantum cascade laser-based hyperspectral infrared chemical imaging. Environ Sci Technol. 2020;54(24):15893–903. https://doi.org/10.1021/acs.est.0c05722.
Kappler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn KJ, Voit B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 2016;408(29):8377–91. https://doi.org/10.1007/s00216-016-9956-3.
Sobhani Z, Zhang X, Gibson C, Naidu R, Megharaj M, Fang C. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): down to 100 nm. Water Research. 2020; 174. https://doi.org/10.1016/j.watres.2020.115658.
Cowger W, Booth AM, Hamilton BM, Thaysen C, Primpke S, Munno K, Lusher AL, Dehaut A, Vaz VP, Liboiron M, Devriese LI, Hermabessiere L, Rochman C, Athey SN, Lynch JM, De Frond H, Gray A, Jones OAH, Brander S, Steele C, Moore S, Sanchez A, Nel H. Reporting guidelines to increase the reproducibility and comparability of research on microplastics. Appl Spectrosc. 2020; 3702820930292. https://doi.org/10.1177/0003702820930292.
Hartmann NB, Huffer T, Thompson RC, Hassellov M, Verschoor A, Daugaard AE, Rist S, Karlsson T, Brennholt N, Cole M, Herrling MP, Hess MC, Ivleva NP, Lusher AL, Wagner M. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol. 2019;53(3):1039–47. https://doi.org/10.1021/acs.est.8b05297.
Cabernard L, Roscher L, Lorenz C, Gerdts G, Primpke S. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environ Sci Technol. 2018;52(22):13279–88. https://doi.org/10.1021/acs.est.8b03438.
Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY. A global perspective on microplastics. J Geophys Res Oceans. 2020; 125 (1). https://doi.org/10.1029/2018jc014719.
Olson NE, Xiao Y, Lei Z, Ault AP. Simultaneous optical photothermal infrared (O-PTIR) and Raman spectroscopy of submicrometer atmospheric particles. Anal Chem. 2020;92(14):9932–9. https://doi.org/10.1021/acs.analchem.0c01495.
Dong M, Zhang Q, Xing X, Chen W, She Z, Luo Z. Raman spectra and surface changes of microplastics weathered under natural environments. Sci Total Environ. 2020;739:139990. https://doi.org/10.1016/j.scitotenv.2020.139990.
Anger PM, von der Esch E, Baumann T, Elsner M, Niessner R, Ivleva NP. Raman microspectroscopy as a tool for microplastic particle analysis. TrAC Trends Anal Chem. 2018;109:214–26. https://doi.org/10.1016/j.trac.2018.10.010.
Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015; 12 (5). https://doi.org/10.1071/en14205.
Simon M, van Alst N, Vollertsen J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Res. 2018;142:1–9. https://doi.org/10.1016/j.watres.2018.05.019.
Wander L, Vianello A, Vollertsen J, Westad F, Braun U, Paul A. Exploratory analysis of hyperspectral FTIR data obtained from environmental microplastics samples. Anal Methods. 2020;12(6):781–91. https://doi.org/10.1039/c9ay02483b.
Hufnagl B, Steiner D, Renner E, Löder MGJ, Laforsch C, Lohninger H. A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers. Anal Methods. 2019;11(17):2277–85. https://doi.org/10.1039/c9ay00252a.
Primpke S, Cross RK, Mintenig SM, Simon M, Vianello A, Gerdts G, Vollertsen J. Toward the systematic identification of microplastics in the environment: evaluation of a new independent software tool (siMPle) for spectroscopic analysis. Appl Spectrosc. 2020;74(9):1127–38. https://doi.org/10.1177/0003702820917760.
Hufnagl B, Stibi M, Martirosyan H, Wilczek U, Möller JN, Löder MGJ, Laforsch C, Lohninger H. Computer-assisted analysis of microplastics in environmental samples based on μFTIR imaging in combination with machine learning. Environ Sci Technol Lett. 2021. https://doi.org/10.1021/acs.estlett.1c00851.
Reffner JA. Advances in infrared microspectroscopy and mapping molecular chemical composition at submicrometer spatial resolution. Spectroscopy. 2018;33 (9):12–17
Beltran V, Marchetti A, Nuyts G, Leeuwestein M, Sandt C, Borondics F, De Wael K. Nanoscale analysis of historical paintings by means of O-PTIR spectroscopy: the identification of the organic particles in L’Arlesienne (portrait of Madame Ginoux) by Van Gogh. Angew Chem Int Ed Engl. 2021. https://doi.org/10.1002/anie.202106058.
Li L, Iskander M. Evaluation of dynamic image analysis for characterizing granular soils. Geotech Test J. 2019;43(5):1149–73.
Li L, Zhao X, Li Z, Song K. COVID-19: performance study of microplastic inhalation risk posed by wearing masks. J Hazard Mater. 2021;411:124955. https://doi.org/10.1016/j.jhazmat.2020.124955.
Scircle A, Cizdziel JV, Tisinger L, Anumol T, Robey D. Occurrence of microplastic pollution at oyster reefs and other coastal sites in the Mississippi Sound, USA: impacts of freshwater inflows from flooding. Toxics. 2020; 8 (2). https://doi.org/10.3390/toxics8020035.
Primpke S, Wirth M, Lorenz C, Gerdts G. Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy. Anal Bioanal Chem. 2018;410(21):5131–41. https://doi.org/10.1007/s00216-018-1156-x.
Renner G, Schmidt TC, Schram J. Characterization and quantification of microplastics by infrared spectroscopy. In: Comprehensive analytical chemistry, Elsevier; 2017;75:67–118. https://doi.org/10.1016/bs.coac.2016.10.006.
Bassan P, Lee J, Sachdeva A, Pissardini J, Dorling KM, Fletcher JS, Henderson A, Gardner P. The inherent problem of transflection-mode infrared spectroscopic microscopy and the ramifications for biomedical single point and imaging applications. Analyst. 2013;138(1):144–57. https://doi.org/10.1039/c2an36090j.
Bassan P, Byrne HJ, Bonnier F, Lee J, Dumas P, Gardner P. Resonant Mie scattering in infrared spectroscopy of biological materials–understanding the “dispersion artefact.” Analyst. 2009;134(8):1586–93. https://doi.org/10.1039/b904808a.
Schymanski D, Goldbeck C, Humpf HU, Furst P. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res. 2018;129:154–62. https://doi.org/10.1016/j.watres.2017.11.011.
Toporski J, Dieing T, Hollricher O (Eds.). Confocal Raman microscopy (2nd ed.), Springer Series in Surface Sciences (66), Springer International Publishing AG (2018).https://link.springer.com/content/pdf/10.1007%2F978-3-319-75380-5.pdf.
Kamemoto LE, Misra AK, Sharma SK, Goodman MT, Luk H, Dykes AC, Acosta T. Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer. Appl Spectrosc. 2010;64(3):255–61. https://doi.org/10.1366/000370210790918364.
Munno K, De Frond H, O’Donnell B, Rochman CM. Increasing the accessibility for characterizing microplastics: introducing new application-based and spectral libraries of plastic particles (SLoPP and SLoPP-E). Anal Chem. 2020;92(3):2443–51. https://doi.org/10.1021/acs.analchem.9b03626.
Cowger W, Steinmetz Z, Gray A, Munno K, Lynch J, Hapich H, Primpke S, De Frond H, Rochman C, Herodotou O. Microplastic spectral classification needs an open source community: open Specy to the rescue! Anal Chem. 2021;93(21):7543–8. https://doi.org/10.1021/acs.analchem.1c00123.
Bassan P, Sachdeva A, Kohler A, Hughes C, Henderson A, Boyle J, Shanks JH, Brown M, Clarke NW, Gardner P. FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (RMieS) EMSC algorithm. Analyst. 2012;137(6):1370–7. https://doi.org/10.1039/c2an16088a.
Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, Ivleva NP. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74. https://doi.org/10.1016/j.watres.2016.03.015.
Fang C, Sobhani Z, Zhang X, Gibson CT, Tang Y, Naidu R. Identification and visualisation of microplastics/ nanoplastics by Raman imaging (ii): smaller than the diffraction limit of laser? Water Res. 2020;183:116046. https://doi.org/10.1016/j.watres.2020.116046.
Fang C, Sobhani Z, Zhang X, McCourt L, Routley B, Gibson CT, Naidu R. Identification and visualisation of microplastics/nanoplastics by Raman imaging (iii): algorithm to cross-check multi-images. Water Res. 2021;194:116913. https://doi.org/10.1016/j.watres.2021.116913.
Veerasingam S, Ranjani M, Venkatachalapathy R, Bagaev A, Mukhanov V, Litvinyuk D, Mugilarasan M, Gurumoorthi K, Guganathan L, Aboobacker VM, Vethamony P. Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: a review. Crit Rev Environ Sci Technol. 2020; 1–63. https://doi.org/10.1080/10643389.2020.1807450.
Johansen MP, Cresswell T, Davis J, Howard DL, Howell NR, Prentice E. Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: use of spectroscopy, microscopy and radiotracer methods. Water Res. 2019;158:392–400. https://doi.org/10.1016/j.watres.2019.04.029.
Stevenson FJ, Goh KM. Infrared spectra of humic acids and related substances. Geochim Cosmochim Acta. 1971;35(5):471–83. https://doi.org/10.1016/0016-7037(71)90044-5.
Knott BC, Erickson E, Allen MD, Gado JE, Graham R, Kearns FL, Pardo I, Topuzlu E, Anderson JJ, Austin HP, Dominick G, Johnson CW, Rorrer NA, Szostkiewicz CJ, Copie V, Payne CM, Woodcock HL, Donohoe BS, Beckham GT, McGeehan JE. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc Natl Acad Sci U S A. 2020;117(41):25476–85. https://doi.org/10.1073/pnas.2006753117.
Li J, Liu H, Paul Chen J. Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018;137:362–74. https://doi.org/10.1016/j.watres.2017.12.056.
Koyuncuoğlu P, Erden G. Sampling, pre-treatment, and identification methods of microplastics in sewage sludge and their effects in agricultural soils: a review. Environ Monit Assess. 2021;193(4):1–28.
Spadea A, Denbigh J, Lawrence MJ, Kansiz M, Gardner P. Analysis of fixed and live single cells using optical photothermal infrared with concomitant Raman spectroscopy. Anal Chem. 2021;93(8):3938–50. https://doi.org/10.1021/acs.analchem.0c04846.
Cai H, Chen M, Chen Q, Du F, Liu J, Shi H. Microplastic quantification affected by structure and pore size of filters. Chemosphere. 2020; 257. https://doi.org/10.1016/j.chemosphere.2020.127198
Süssmann J, Krause T, Martin D, Walz E, Greiner R, Rohn S, Fischer EK, Fritsche J. Evaluation and optimisation of sample preparation protocols suitable for the analysis of plastic particles present in seafood. Food Control. 2021; 125. https://doi.org/10.1016/j.foodcont.2021.107969
Kappler A, Windrich F, Loder MG, Malanin M, Fischer D, Labrenz M, Eichhorn KJ, Voit B. Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements. Anal Bioanal Chem. 2015;407(22):6791–801. https://doi.org/10.1007/s00216-015-8850-8.
Primpke S, Lorenz C, Rascher-Friesenhausen R, Gerdts G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal Methods. 2017;9(9):1499–511. https://doi.org/10.1039/c6ay02476a.
von der Esch E, Lanzinger M, Kohles AJ, Schwaferts C, Weisser J, Hofmann T, Glas K, Elsner M, Ivleva NP. Simple generation of suspensible secondary microplastic reference particles via ultrasound treatment. Front Chem. 2020;8:169. https://doi.org/10.3389/fchem.2020.00169.
Acknowledgements
We acknowledge Agilent Technologies (China) Co., Ltd.; Bruker (Beijing) Scientific Technology Co., Ltd.; Quantum Design (Beijing) Co., Ltd.; Purency GmbH; Photothermal Spectroscopy Corp.; and WITec (Beijing) Scientific Technology Co., Ltd. for providing technical support. We acknowledge Benedikt Hufnagl, Guiping Chen, Hailong Hu, Jingjing Wang, Lukas Wander, Michael Stibi, Michael Tang, Wanghua Wu, William Zhao, Xi Hu, and Yang Gao for their assistance in this study.
Funding
This research was funded by the National Key Research and Development Program (2020YFC1806804).
Author information
Authors and Affiliations
Contributions
Mingtan Dong: conceptualization, methodology, formal analysis, writing—original draft;
Zhenbing She: resources, writing—review and editing;
Xiong Xiong: writing—review and editing;
Guang Ouyang: writing—review and editing;
Zejiao Luo: resources, funding acquisition, writing—review and editing
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Preprint
A preprint version of this article is available on ChemRxiv: https://chemrxiv.org/engage/chemrxiv/article-details/6111316e4cb47946752b9ae5
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Dong, M., She, Z., Xiong, X. et al. Automated analysis of microplastics based on vibrational spectroscopy: are we measuring the same metrics?. Anal Bioanal Chem 414, 3359–3372 (2022). https://doi.org/10.1007/s00216-022-03951-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-022-03951-6