Skip to main content
Log in

Expansion of the composition library for chemodiversity of hardwood extractives at molecular level by ultrahigh-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To enhance the characterization of wood extractives at molecular level, a detailed ultrahigh-resolution mass spectrometry (UHRMS)–based analytical methodology was developed in this work. The analytical strategies, including selection of compatible solvent for extraction, evaluation of ionization solvent for effective electrospray ionization, and multi-dimensional data analysis, were established to ensure a comprehensive characterization of complex compositions in wood extractives. Extraction capability of seven solvents with varied polarities was examined by a standard reference material of hardwood biomass and evaluated based on thousands of compounds which were much more than those discovered before. With a variety of data-processing approaches, including compound type distribution, double bond equivalent versus carbon number plot, and van Krevelen diagram, the chemodiversity of the extractives was fully explored from different perspectives. This work greatly expanded the compound library of wood extractives and could also provide guidance for the integrated composition analysis of other biomass materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Higuchi T. Biosynthesis of Wood Components. In: Higuchi T, editor. Biochemistry and molecular biology of wood. Berlin: Springer Berlin Heidelberg; 1997. p. 93–262.

    Chapter  Google Scholar 

  2. Pettersen RC. The chemical composition of wood. In: The chemistry of solid wood. American Chemical Society; 1984. p. 57–126.

    Chapter  Google Scholar 

  3. Schultz TP, Nicholas DD. Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochem. 2000;54:47–52. https://doi.org/10.1016/S0031-9422(99)00622-6.

    Article  CAS  Google Scholar 

  4. Grabner M, Müller U, Gierlinger N, Wimmer R. Effects of heartwood extractives on mechanical properties of Larch. IAWA J. 2005;26:211–20. https://doi.org/10.1163/22941932-90000113.

    Article  Google Scholar 

  5. Pandey KK. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polym Degrad Stab. 2005;87:375–9. https://doi.org/10.1016/j.polymdegradstab.2004.09.007.

    Article  CAS  Google Scholar 

  6. Xu C, Qin M, Fu Y, Liu N, Hemming J, Holmbom B, Willför S. Lipophilic Extractives in Populus × euramericana “Guariento” Stemwood and Bark. J Wood Chem Technol. 2010;30:105–17. https://doi.org/10.1080/02773810903085994.

    Article  CAS  Google Scholar 

  7. Serreqi AN, Leone R, Del Rio LF, Mei S, Fernandez M, Breuil C. Identification and quantification of important steryl esters in aspen wood. J Am Oil Chem Soc. 2000;77:423. https://doi.org/10.1007/s11746-000-0066-9.

    Article  Google Scholar 

  8. Pietarinen SP, Willför SM, Ahotupa MO, Hemming JE, Holmbom BR. Knotwood and bark extracts: strong antioxidants from waste materials. J Wood Sci. 2006;52:436–44. https://doi.org/10.1007/s10086-005-0780-1.

    Article  CAS  Google Scholar 

  9. Celedon JM, Chiang A, Yuen MMS, Diaz-Chavez ML, Madilao LL, Finnegan PM, Barbour EL, Bohlmann J. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. Plant J. 2016;86:289–99. https://doi.org/10.1111/tpj.13162.

    Article  CAS  PubMed  Google Scholar 

  10. Ma D, Reichelt M, Yoshida K, Gershenzon J, Constabel CP. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant J. 2018;96:949–65. https://doi.org/10.1111/tpj.14081.

    Article  CAS  PubMed  Google Scholar 

  11. Horvath AL. Solubility of structurally complicated materials: I. wood. J Phys Chem Ref Data. 2006;35:77–92. https://doi.org/10.1063/1.2035708.

    Article  CAS  Google Scholar 

  12. Hsu CS, Drinkwater D. Gas chromatography-mass spectrometry in the petroleum industry. In: Current practice of gas chromatography-mass spectrometry. New York: Marcel Dekker, Inc; 2001. p. 55–94.

    Google Scholar 

  13. Gutiérrez A, del Río JC, González-Vila FJ, Martín F. Analysis of lipophilic extractives from wood and pitch deposits by solid-phase extraction and gas chromatography. J Chromatogr A. 1998;823:449–55. https://doi.org/10.1016/S0021-9673(98)00356-2.

    Article  Google Scholar 

  14. Liu R, Wang C, Huang A, Lv B. Identification of odorous constituents of southern yellow pine and China fir wood: the effects of extractive removal. Anal Methods. 2018;10:2115–22. https://doi.org/10.1039/C7AY02885G.

    Article  CAS  Google Scholar 

  15. Qiu H, Liu R, Long L. Analysis of chemical composition of extractives by acetone and the chromatic aberration of Teak (Tectona Grandis L.F.) from China. Molecules. 2019;24 https://doi.org/10.3390/molecules24101989.

  16. Fernandez MP, Watson PA, Breuil C. Gas chromatography–mass spectrometry method for the simultaneous determination of wood extractive compounds in quaking aspen. J Chromatogr A. 2001;922:225–33. https://doi.org/10.1016/S0021-9673(01)00948-7.

    Article  CAS  PubMed  Google Scholar 

  17. Miranda I, Sousa V, Ferreira J, Pereira H. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea. PLoS One. 2017;12:e0179268. https://doi.org/10.1371/journal.pone.0179268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Esteves B, Graça J, Pereira H. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung. 2008;62:344–51. https://doi.org/10.1515/HF.2008.057.

    Article  CAS  Google Scholar 

  19. Bataineh M, Scott AC, Fedorak PM, Martin JW. Capillary HPLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation. Anal Chem. 2006;78:8354–61. https://doi.org/10.1021/ac061562p.

    Article  CAS  PubMed  Google Scholar 

  20. Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler J-P. Practical approaches to plant volatile analysis. Plant J. 2006;45:540–60. https://doi.org/10.1111/j.1365-313X.2005.02612.x.

    Article  CAS  PubMed  Google Scholar 

  21. Hsu CS, Hendrickson CL, Rodgers RP, McKenna AM, Marshall AG. Petroleomics: advanced molecular probe for petroleum heavy ends. J Mass Spectrom. 2011;46:337–43. https://doi.org/10.1002/jms.1893.

    Article  CAS  PubMed  Google Scholar 

  22. Pandey AMM. Proteomics to study genes and genomes. Nature. 2000;405:837–46. https://doi.org/10.1038/35015709.

    Article  CAS  PubMed  Google Scholar 

  23. Marshall AG, Rodgers RP. Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res. 2004;37:53–9. https://doi.org/10.1002/chin.200415280.

    Article  CAS  PubMed  Google Scholar 

  24. Hsu CS, Liang Z, Campana JE. Hydrocarbon characterization by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 1994;66:850–5. https://doi.org/10.1021/ac00078a015.

    Article  CAS  Google Scholar 

  25. Rowland SM, Smith DF, Blakney GT, Corilo YE, Hendrickson CL, Rodgers RP. Online coupling of liquid chromatography with Fourier transform ion cyclotron resonance mass spectrometry at 21 T provides fast and unique insight into crude oil composition. Anal Chem. 2021;93:13749–54. https://doi.org/10.1021/acs.analchem.1c01169.

    Article  CAS  PubMed  Google Scholar 

  26. Ohno T, He Z, Sleighter RL, Honeycutt CW, Hatcher PG. Ultrahigh resolution mass spectrometry and indicator species analysis to identify marker components of soil- and plant biomass-derived organic matter fractions. Environ Sci Technol. 2010;44:8594–600. https://doi.org/10.1021/es101089t.

    Article  CAS  PubMed  Google Scholar 

  27. Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W. Metabolic engineering of novel lignin in biomass crops. New Phytol. 2012;196:978–1000. https://doi.org/10.1111/j.1469-8137.2012.04337.x.

    Article  CAS  PubMed  Google Scholar 

  28. Qi Y, Hempelmann R, Volmer DA. Two-dimensional mass defect matrix plots for mapping genealogical links in mixtures of lignin depolymerisation products. Anal Bioanal Chem. 2016;408:4835–43. https://doi.org/10.1007/s00216-016-9598-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi Y, Volmer DA. Chemical diversity of lignin degradation products revealed by matrix-optimized MALDI mass spectrometry. Anal Bioanal Chem. 2019;411:6031–7. https://doi.org/10.1007/s00216-016-9598-5.

    Article  CAS  PubMed  Google Scholar 

  30. Shi Q, Pan N, Long H, Cui D, Guo X, Long Y, Chung KH, Zhao S, Xu C, Hsu CS. Characterization of middle-temperature gasification coal tar. Part 3: Molecular composition of acidic compounds. Energy Fuel. 2013;27:108–17. https://doi.org/10.1007/s00216-016-9598-5.

    Article  CAS  Google Scholar 

  31. Cech NB, Enke CG. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev. 2001;20:362–87. https://doi.org/10.1002/mas.10008.

    Article  CAS  PubMed  Google Scholar 

  32. Kebarle P, Verkerk UH. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev. 2009;28:898–917. https://doi.org/10.1021/la00086a016.

    Article  CAS  PubMed  Google Scholar 

  33. Kim S, Kramer RW, Hatcher PG. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Anal Chem. 2003;75:5336–44. https://doi.org/10.1021/ac034415p.

    Article  CAS  PubMed  Google Scholar 

  34. Hockaday WC, Purcell JM, Marshall AG, Baldock JA, Hatcher PG. Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment. Limnol Oceanogr Methods. 2009;7:81–95. https://doi.org/10.4319/lom.2009.7.81.

    Article  Google Scholar 

  35. Koch BP, Dittmar T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Spectrom. 2006;20:926–32. https://doi.org/10.1002/rcm.2386.

    Article  CAS  Google Scholar 

  36. Smith JS, Laskin A, Laskin J. Molecular characterization of biomass burning aerosols using high-resolution mass spectrometry. Anal Chem. 2009;81:1512–21. https://doi.org/10.1021/ac8020664.

    Article  CAS  PubMed  Google Scholar 

  37. Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S. KNApSAcK Family Databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol. 2012;53:e1. https://doi.org/10.1093/pcp/pcr165.

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura Y, Afendi FM, Parvin AK, Ono N, Tanaka K, Hirai Morita A, Sato T, Sugiura T, Altaf-Ul-Amin M, Kanaya S. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 2014;55:e7. https://doi.org/10.1093/pcp/pct176.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21874153) and Science Foundation of China University of Petroleum, Beijing (No. 2462017BJB09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehua Han.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Pan, Q., Wang, Y. et al. Expansion of the composition library for chemodiversity of hardwood extractives at molecular level by ultrahigh-resolution mass spectrometry. Anal Bioanal Chem 414, 2687–2698 (2022). https://doi.org/10.1007/s00216-022-03909-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03909-8

Keywords

Navigation