Skip to main content
Log in

dCITI-Seq: droplet combinational indexed transposon insertion sequencing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The rapid development of high-throughput parallel sequencing poses new challenges for large-scale barcoding and sequencing library construction. Here, we present droplet combinational indexed transposon insertion sequencing (dCITI-Seq), in which samples are indexed by the direct insertion of index-containing adaptors through transposition. The random combination of two sets of adaptors with known barcodes and massively parallel transposition was realized via a robust droplet pairing and merging platform. This strategy potentially enlarges the indexing capacity and decreases index crosstalk. Also, dCITI-Seq exhibited a lower GC base preference than conventional in-tube transposition library preparation. With a custom bioinformatic processing, it could be further applied to large-scale single-cell sequencing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Quail MA, Smith M, Jackson D, Leonard S, Skelly T, Swerdlow HP, et al. SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing. Bmc Genomics. 2014;15:110.

  2. Mezger A, Klemm S, Mann I, Brower K, Mir A, Bostick M, et al. High-throughput chromatin accessibility profiling at single-cell resolution. Nat Commun. 2018;9(1):3647.

    Article  Google Scholar 

  3. Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev. 2017;117(12):7964–8040.

    Article  CAS  Google Scholar 

  4. Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab Chip. 2017;17(1):11–33.

    Article  CAS  Google Scholar 

  5. Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev. 2017;46(14):4245–80.

    Article  CAS  Google Scholar 

  6. Du G, Fang Q, den Toonder JMJ. Microfluidics for cell-based high throughput screening platformsd-a review. Anal Chim Acta. 2016;903:36–50.

    Article  CAS  Google Scholar 

  7. Trantidou T, Friddin MS, Salehi-Reyhani A, Ces O, Elani Y. Droplet microfluidics for the construction of compartmentalised model membranes. Lab Chip. 2018;18(17):2488–509.

    Article  CAS  Google Scholar 

  8. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201.

    Article  CAS  Google Scholar 

  9. Zheng W, Zhao S, Yin Y, Zhang H, Needham DM, Evans ED, et al. Microbe-seq: high-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. bioRxiv. 2020;422699. https://doi.org/10.1101/2020.12.14.422699.

  10. Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD, Kohlway AS, et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat Biotechnol. 2019;37(8):916–24.

    Article  CAS  Google Scholar 

  11. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.

    Article  CAS  Google Scholar 

  12. Delley CL, Abate AR. Modular barcode beads for microfluidic single cell genomics. Sci Rep. 2021;11(1):10857.

    Article  CAS  Google Scholar 

  13. Zheng H, Pomyen Y, Hernandez MO, Li C, Livak F, Tang W, et al. Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology. 2018;68(1):127–40.

    Article  Google Scholar 

  14. Muller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 2017;18:14.

    Article  Google Scholar 

  15. Savage P, Blanchet-Cohen A, Revil T, Badescu D, Saleh SMI, Wang YC, et al. A targetable EGFR-dependent tumor-initiating program in breast cancer. Cell Rep. 2017;21(5):1140–9.

    Article  CAS  Google Scholar 

  16. Sinha R, Stanley G, Gulati GS, Ezran C, Weissman IL. Index switching causes “spreading-of-signal” among multiplexed samples in Illumina HiSeq 4000 DNA sequencing. bioRxiv. 2017;125724. https://doi.org/10.1101/125724.

  17. Lan F, Demaree B, Ahmed N, Abate AR. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol. 2017;35(7):640–6.

    Article  CAS  Google Scholar 

  18. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article  CAS  Google Scholar 

  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article  Google Scholar 

  20. Okonechnikov K, Conesa A, Garcia-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32(2):292–4.

    CAS  PubMed  Google Scholar 

  21. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31(12):2032–4.

    Article  CAS  Google Scholar 

  22. Li J, Lu N, Tao Y, Duan M, Qiao Y, Xu Y, et al. Accurate and sensitive single-cell-level detection of copy number variations by micro-channel multiple displacement amplification (μcMDA). Nanoscale. 2018;10(37):17933–41.

    Article  CAS  Google Scholar 

  23. Delley CL, Abate ARJLoaC. Microfluidic particle zipper enables controlled loading of droplets with distinct particle types. Lab Chip. 2020;20(14):2465–72.

  24. Qiao Y, Fu J, Yang F, Duan M, Huang M, Tu J, et al. An efficient strategy for a controllable droplet merging system for digital analysis. RSC Advances. 2018;8(60):34343–9.

  25. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995;23(6):1087–8.

    Article  CAS  Google Scholar 

  26. Sidore AM, Lan F, Lim SW, Abate AR. Enhanced sequencing coverage with digital droplet multiple displacement amplification. Nucleic Acids Res. 2016;44(7):e66.

    Article  Google Scholar 

  27. Li J, Lu N, Shi X, Qiao Y, Chen L, Duan M, et al. 1D-reactor decentralized MDA for uniform and accurate whole genome amplification. Anal Chem. 2017;89(19):10147–52.

    Article  CAS  Google Scholar 

  28. Green B, Bouchier C, Fairhead C, Craig NL, Cormack BP. Insertion site preference of Mu, Tn5, and Tn7 transposons. Mobile DNA. 2012;3:3.

  29. Lan F, Haliburton JR, Yuan A, Abate AR. Droplet barcoding for massively parallel single-molecule deep sequencing. Nat Commun. 2016;7:11784.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20211513), National Natural Science Foundation of China (61971125), and Six Talent Peaks Project of Jiangsu Province (2019-SWYY-004).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jing Tu. Investigation and methodology: Yi Qiao, Zheyun Xu, Naiyun Long. Data curation and formal analysis: Zheyun Xu, Na Lu. Resources and supervision: Jing Tu, Zuhong Lu. Writing—original draft: Jing Tu, Yi Qiao, Zheyun Xu. Writing, review, and editing: Jing Tu, Yi Qiao.

Corresponding authors

Correspondence to Jing Tu or Zuhong Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 15360 KB)

Supplementary file2 (MP4 6272 KB)

Supplementary file3 (DOCX 1589 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J., Qiao, Y., Xu, Z. et al. dCITI-Seq: droplet combinational indexed transposon insertion sequencing. Anal Bioanal Chem 414, 2661–2670 (2022). https://doi.org/10.1007/s00216-022-03902-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03902-1

Keywords

Navigation