Skip to main content
Log in

A dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for determination of Cu2+ and glyphosate

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein, a dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for Cu2+ and glyphosate determination was constructed. Fluorescence silicon nanoparticles (SiNPs) were prepared by hydrothermal reaction, which has maximum fluorescence intensity under the excitation of 355 nm. o-Phenylenediamine (OPD) was oxidized through Cu2+ to generate 2,3-diaminophenazine (oxOPD). The obtained oxOPD showed a strong absorption peak at 417 nm and quenched the fluorescence of SiNPs at 446 nm due to fluorescence resonance energy transfer (FRET). Meanwhile, oxOPD produced a new fluorescence emission at 556 nm forming a ratiometric state. With increasing Cu2+, the original solution changed from colorless to yellow. When glyphosate was present, the interaction between Cu2+ and the functional groups of glyphosate could reduce the oxidation of oxOPD, resulting in the enhancement of fluorescence at 446 nm and the decrease of fluorescence at 556 nm. Furthermore, the addition of glyphosate changed yellow solution to colorless. Under the optimal conditions of OPD (1 mM), 20 mM Tris–HCl buffer (pH 7.5), and incubation time (4 h), the ratiometric fluorescence sensor had good selectivity and showed a wide linear range of 0.025–20 μM with the LOD of 0.008 μM for Cu2+ and 0.15–1.5 μg/mL with the LOD of 0.003 μg/mL for glyphosate, respectively. Besides, it is worth mentioning that this developed sensing system showed good performance in real samples, providing a simple and reliable dual-signal detection strategy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang XD, Chen XK, Yang JJ, Jia HR, Li YH, Chen Z, Wu FG. Quaternized silicon nanoparticles with polarity-sensitive fluorescence for selectively imaging and killing Gram-positive bacteria. Adv Func Mater. 2016;26(33):5958–70. https://doi.org/10.1002/adfm.201602185.

    Article  CAS  Google Scholar 

  2. Han YX, Chen YL, Feng J, Liu JJ, Ma SD, Chen XG. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem. 2017;89(5):3001–8. https://doi.org/10.1021/acs.analchem.6b04509.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu LJ, Peng X, Li HT, Zhang YY, Yao SZ. On-off-on fluorescent silicon nanoparticles for recognition of chromium(VI) and hydrogen sulfide based on the inner filter effect. Sens Actuators B Chem. 2017;238:196–203. https://doi.org/10.1016/j.snb.2016.07.029.

    Article  CAS  Google Scholar 

  4. Li Q, Peng KT, Lu YZ, Li AX, Che FF, Liu YY, Xi XJ, Chu Q, Lan T, Wei Y. Synthesis of fluorescent ionic liquid-functionalized silicon nanoparticles with tunable amphiphilicity and selective determination of Hg2+. J Mat Chem B. 2018;6(48):8214–20. https://doi.org/10.1039/c8tb02109k.

    Article  CAS  Google Scholar 

  5. Wan YQ, Tian ML, Xie WY, Li CM, Liu YS. One-step synthesis of amine-functionalized fluorescent silicon nanoparticles for copper(II) ion detection. Anal Bioanal Chem. 2019;411(24):6419–26. https://doi.org/10.1007/s00216-019-02020-9.

    Article  CAS  Google Scholar 

  6. Du LQ, Li ZP, Yao JL, Wen GM, Dong C, Li H. Enzyme free glucose sensing by amino-functionalized silicon quantum dot. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;216:303–9. https://doi.org/10.1016/j.saa.2019.03.071.

    Article  CAS  Google Scholar 

  7. Taheri M, Mansour N. Highly sensitive fluorescence assay for glucose using amine-terminated silicon quantum dots as a non-enzymatic bioprobe. J Electron Mater. 2019;48(9):5875–82. https://doi.org/10.1007/s11664-019-07368-3.

    Article  CAS  Google Scholar 

  8. Ban R, Zheng FF, Zhang JR. A highly sensitive fluorescence assay for 2,4,6-trinitrotoluene using amine-capped silicon quantum dots as a probe. Anal Methods. 2015;7(5):1732–7. https://doi.org/10.1039/c4ay02729a.

    Article  CAS  Google Scholar 

  9. Zhou Z, Gu JP, Chen YZ, Zhang XX, Wu HX, Qiao XG. Europium functionalized silicon quantum dots nanomaterials for ratiometric fluorescence detection of Bacillus anthrax biomarker. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;212:88–93. https://doi.org/10.1016/j.saa.2018.12.036.

    Article  CAS  Google Scholar 

  10. Chu BB, Wang HY, Song B, Peng F, Su YY, He Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal Chem. 2016;88(18):9235–42. https://doi.org/10.1021/acs.analchem.6b02488.

    Article  CAS  PubMed  Google Scholar 

  11. Li Q, Peng KT, Yu YC, Ruan XY, Wei Y. One-pot synthesis of highly fluorescent silicon nanoparticles for sensitive and selective detection of hemoglobin. Electrophoresis. 2019;40(16–17):2129–34. https://doi.org/10.1002/elps.201900023.

    Article  CAS  PubMed  Google Scholar 

  12. Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ. A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc. 2006;128(1):10–1. https://doi.org/10.1021/ja055064u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Pan YN, Jiang LX, Liu M, Liu FY, Jia M, Li J, Lai YQ. Photoelectrochemical determination of Cu2+ using a WO3/CdS heterojunction photoanode. ACS Appl Mater Interfaces. 2019;11(41):37541–9. https://doi.org/10.1021/acsami.9b10256.

    Article  CAS  PubMed  Google Scholar 

  14. Balasubramanian K. Quantum chemical insights into Alzheimer’s disease: curcumin’s chelation with Cu(II), Zn(II), and Pd(II) as a mechanism for its prevention. Int J Quantum Chem. 2016;116(14):1107–19. https://doi.org/10.1002/qua.25145.

    Article  CAS  Google Scholar 

  15. Yu SJ, Li W, Fujii Y, Omura T, Minami H. Fluorescent spherical sponge cellulose sensors for highly selective and semiquantitative visual analysis: detection of Hg2+ and Cu2+ ions. ACS Sustain Chem Eng. 2019;7(23):19157–66. https://doi.org/10.1021/acssuschemeng.9b05142.

    Article  CAS  Google Scholar 

  16. Liu Y, Su QQ, Chen M, Dong Y, Shi YB, Feng W, Wu ZY, Li FY. Near-infrared upconversion chemodosimeter for in vivo detection of Cu2+ in Wilson disease. Adv Mater. 2016;28(31):6625-+. https://doi.org/10.1002/adma.201601140.

    Article  CAS  PubMed  Google Scholar 

  17. Davies KM, Mercer JFB, Chen N, Double KL. Copper dyshomoeostasis in Parkinson’s disease: implications for pathogenesis and indications for novel therapeutics. Clin Sci. 2016;130(8):565–74. https://doi.org/10.1042/cs20150153.

    Article  Google Scholar 

  18. Perez AL, Tibaldo G, Sanchez GH, Siano GG, Marsili NR, Schenone AV. A novel fluorimetric method for glyphosate and AMPA determination with NBD-Cl and MCR-ALS. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;214:119–28. https://doi.org/10.1016/j.saa.2019.01.078.

    Article  CAS  Google Scholar 

  19. Tarazona JV, Court-Marques D, Tiramani M, Reich H, Pfeil R, Istace F, Crivellente F. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Arch Toxicol. 2017;91(8):2723–43. https://doi.org/10.1007/s00204-017-1962-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fortes C, Mastroeni S, Segatto M, Hohmann C, Miligi L, Bakos L, Bonamigo R. Occupational exposure to pesticides with occupational sun exposure increases the risk for cutaneous melanoma. J Occup Environ Med. 2016;58(4):370–5. https://doi.org/10.1097/jom.0000000000000665.

    Article  CAS  PubMed  Google Scholar 

  21. Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, vom Saal FS, Welshons WV, Benbrook CM. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health. 2016;15:19. https://doi.org/10.1186/s12940-016-0117-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, Parven A, Megharaj M. Controversies over human health and ecological impacts of glyphosate: is it to be banned in modern agriculture? Environ Pollut. 2020;263:114372. https://doi.org/10.1016/j.envpol.2020.114372.

    Article  CAS  PubMed  Google Scholar 

  23. Wang YY, Yang Y, Liu W, Ding F, Zhao QB, Zou P, Wang XX, Rao HB. Colorimetric and fluorometric determination of uric acid based on the use of nitrogen-doped carbon quantum dots and silver triangular nanoprisms. Microchim Acta. 2018;185(6):9. https://doi.org/10.1007/s00604-018-2814-6.

    Article  CAS  Google Scholar 

  24. Wu C, Zhu L, Lu Q, Li H, Zhang Y, Yao S (2019) A dual-signal colorimetric and ratiometric fluorescent nanoprobe for enzymatic determination of uric acid by using silicon nanoparticles. Microchim Acta 186(12). https://doi.org/10.1007/s00604-019-3862-2

  25. Wang J, Li DQ, Qiu Y, Liu XY, Huang L, Wen HM, Hu J. An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta. 2020;220:121377. https://doi.org/10.1016/j.talanta.2020.121377.

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Li DQ, Ye YX, Qiu Y, Liu JW, Huang L, Liang B, Chen BL (2021) A fluorescent metal-organic framework for food real-time visual monitoring. Adv Mater 33(15). https://doi.org/10.1002/adma.202008020

  27. Ding L, Gong Z, Yan M, Yu J, Song X. Determination of glucose by using fluorescent silicon nanoparticles and an inner filter caused by peroxidase-induced oxidation of o-phenylenediamine by hydrogen peroxide. Microchim Acta. 2017;184(11):4531–6. https://doi.org/10.1007/s00604-017-2445-3.

    Article  CAS  Google Scholar 

  28. Zhou Z, Zhang Y, Kang J, Dong C, Chen N, Li X, Guo Z, Wu A. Detection of herbicide glyphosates based on an anti-aggregation mechanism by using unmodified gold nanoparticles in the presence of Pb2+. Anal Methods. 2017;9(19):2890–6. https://doi.org/10.1039/c7ay00426e.

    Article  CAS  Google Scholar 

  29. Wang L, Bi YD, Hou J, Li HY, Xu Y, Wang B, Ding H, Ding L. Facile, green and clean one-step synthesis of carbon dots from wool: application as a sensor for glyphosate detection based on the inner filter effect. Talanta. 2016;160:268–75. https://doi.org/10.1016/j.talanta.2016.07.020.

    Article  CAS  PubMed  Google Scholar 

  30. Romero JJ, Wegmann M, Rodriguez HB, Lillo C, Rubert A, Klein S, Kotler ML, Kryschi C, Gonzalez MC. Impact of iron incorporation on 2–4 nm size silicon nanoparticles properties. J Phys Chem C. 2015;119(10):5739–46. https://doi.org/10.1021/acs.jpcc.5b00172.

    Article  CAS  Google Scholar 

  31. Wu JZ, Dai J, Shao YB, Sun YC. One-step synthesis of fluorescent silicon quantum dots (Si-QDs) and their application for cell imaging. RSC Adv. 2015;5(102):83581–7. https://doi.org/10.1039/c5ra13119g.

    Article  CAS  Google Scholar 

  32. Zhang HJ, Chen YL, Liang MJ, Xu LF, Qi SD, Chen HL, Chen XG. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem. 2014;86(19):9846–52. https://doi.org/10.1021/ac502446m.

    Article  CAS  PubMed  Google Scholar 

  33. Wen GZ, Zeng XB, Wen XX, Liao WG (2014) Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films. J Appl Phys 115(16). https://doi.org/10.1063/1.4871980

  34. Zhong YL, Peng F, Bao F, Wang SY, Ji XY, Yang L, Su YY, Lee ST, He Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc. 2013;135(22):8350–6. https://doi.org/10.1021/ja4026227.

    Article  CAS  PubMed  Google Scholar 

  35. Wu FG, Zhang XD, Kai SQ, Zhang MY, Wang HY, Myers JN, Weng YX, Liu PD, Gu N, Chen Z (2015) One-step synthesis of superbright water-soluble silicon nanoparticles with photoluminescence quantum yield exceeding 80%. Adv Mater Interfaces 2(16). https://doi.org/10.1002/admi.201500360

  36. Zhong YL, Sun XT, Wang SY, Peng F, Bao F, Su YY, Li YY, Lee ST, He Y. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano. 2015;9(6):5958–67. https://doi.org/10.1021/acsnano.5b00683.

    Article  CAS  PubMed  Google Scholar 

  37. Yang X, Wang EK. A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Anal Chem. 2011;83(12):5005–11. https://doi.org/10.1021/ac2008465.

    Article  CAS  PubMed  Google Scholar 

  38. Sun J, Wang B, Zhao X, Li Z-J, Yang X. Fluorescent and colorimetric dual-readout assay for inorganic pyrophosphatase with Cu2+-triggered oxidation of o-phenylenediamine. Anal Chem. 2016;88(2):1355–61. https://doi.org/10.1021/acs.analchem.5b03848.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu S, Cao H, Yan X, Sun J, Qiu J, Qu X, Zuo Y-N, Wang X, Zhao X-E. A convenient fluorescent assay for quinolones based on their inhibition towards the oxidase-like activity of Cu2+. New J Chem. 2019;43(9):3707–12. https://doi.org/10.1039/c8nj06285d.

    Article  CAS  Google Scholar 

  40. Daniele PG, DeStefano C, Prenesti E, Sammartano S. Copper(II) complexes of N-(phosphonomethyl)glycine in aqueous solution: a thermodynamic and spectrophotometric study. Talanta. 1997;45(2):425–31. https://doi.org/10.1016/s0039-9140(97)00156-2.

    Article  CAS  PubMed  Google Scholar 

  41. Chang Y, Zhang Z, Hao J, Yang W, Tang J. A simple label free colorimetric method for glyphosate detection based on the inhibition of peroxidase-like activity of Cu(II). Sens Actuators B Chem. 2016;228:410–5. https://doi.org/10.1016/j.snb.2016.01.048.

    Article  CAS  Google Scholar 

  42. Zhao J, Wang S, Lu S, Sun J, Yang X. A luminescent europium-dipicolinic acid nanohybrid for the rapid and selective sensing of pyrophosphate and alkaline phosphatase activity. Nanoscale. 2018;10(15):7163–70. https://doi.org/10.1039/c8nr00223a.

    Article  CAS  PubMed  Google Scholar 

  43. Li F, Liu J, Hu Y, Deng N, He J. An ultrasensitive label-free colorimetric assay for glutathione based on Ag(+) regulated autocatalytic oxidation of o-phenylenediamine. Talanta. 2018;186:330–6. https://doi.org/10.1016/j.talanta.2018.04.078.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J, Yuan Y, Xu X, Wang X, Yang X. Core/shell Cu@Ag nanoparticle: a versatile platform for colorimetric visualization of inorganic anions. Acs Appl Mater Interfaces. 2011;3(10):4092–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Analytical and Testing Center of Chongqing University for TEM/FT-IR/XRD/XPS and the sharing fund of Chongqing University’s large equipment.

Funding

This work was supported by the National Key R&D Program of China (2017YFC1602000), National Natural Science Foundation of China (No. 31171684), Graduate Scientific Research and Innovation Foundation of Chongqing, China (Grant CYS21069), Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry (2021JJ001), Key Laboratory of Brewing Molecular Engineering of China Light Industry (BME-202108), Brew Microorganisms Technology and Application of Key Laboratory Project in Sichuan Province (NJ2020-03), Chongqing Graduate Tutor Team Construction Project, and the Natural Science Foundations of Hainan Province (No. 219QN290).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danqun Huo or Changjun Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3274 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, L., Lin, L. et al. A dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for determination of Cu2+ and glyphosate. Anal Bioanal Chem 414, 2619–2628 (2022). https://doi.org/10.1007/s00216-022-03898-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03898-8

Keywords

Navigation