Skip to main content
Log in

A ratiometric fluorescent sensor for tetracyclines detection in meat based on pH-dependence of targets with lanthanum-doped carbon dots as probes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although some ratiometric fluorescent sensors have been reported to detect tetracyclines, most of ratiometric fluorescent sensors were established based on europium ion with a narrow linear range. In this work, a ratiometric fluorescent sensor for tetracyclines detection was established based on the dual-emission lanthanum-doped carbon dots (La-CDs) as probes combining with the characteristic pH-response of tetracyclines. The fluorescence intensity of tetracyclines will be enhanced in high pH, and the emission peak of tetracyclines overlapped with the peak of probes. The superposition effect of tetracyclines and probes at 515 nm greatly improved the sensitivity of the ratiometric fluorescent sensor and widened the detection range, and linear ranges for oxytetracycline (OTC) and tetracycline (TC) were respectively 0.00–805.20 μM and 0.00–1039.50 μM. Moreover, the preparation procedure of the La-CDs was simple and time saving and the coupling agent was not required. A comparison of La-CDs with undoped carbon dots (un-CDs) showed that the optical performance and sensing performance of La-CDs were improved. In addition, a portable paper sensor with La-CDs as probes was preliminarily explored in this work, and the sensor has been applied to detect OTC and TC in pork and fish with satisfactory results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li RX, Wang WJ, El-Sayed E-SM, Su KZ, He PL, Yuan DQ. Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal–organic framework. Sensor Actuat B: Chem. 2021;330:129314.

  2. Sreejith S, Shajahan S, Prathiush PR, Anjana VM, Viswanathan A, Chandran V, et al. Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Microb Pathogensis. 2020;149:104562.

    Article  CAS  Google Scholar 

  3. Wei W, He J, Wang YY, Kong MJ. Ratiometric method based on silicon nanodots and Eu(3+) system for highly-sensitive detection of tetracyclines. Talanta. 2019;204:491–8.

    Article  CAS  PubMed  Google Scholar 

  4. Li YY, Du QQ, Zhang XD, Huang YM. Ratiometric detection of tetracycline based on gold nanocluster enhanced Eu(3+) fluorescence. Talanta. 2020;206:120202.

    Article  CAS  PubMed  Google Scholar 

  5. Li L, Shi LH, Jia J, Eltayeb O, Lu WJ, Tang YH, et al. Red fluorescent carbon dots for tetracycline antibiotics and pH discrimination from aggregation-induced emission mechanism. Sensor Actuat B: Chem. 2021;332:129513.

  6. Xu J, Shen XK, Jia L, Zhou TL, Ma TL, Xu ZQ, et al. A novel visual ratiometric fluorescent sensing platform for highly-sensitive visual detection of tetracyclines by a lanthanide- functionalized palygorskite nanomaterial. J Hazard Mater. 2018;342:158–65.

    Article  CAS  PubMed  Google Scholar 

  7. Han S, Yang L, Wen ZG, Chu SY, Wang M, Wang ZY, et al. A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline. J Hazard Mater. 2020;398:122894.

    Article  CAS  PubMed  Google Scholar 

  8. Wu ZT, Zhou Y, Huang HY, Su Z, Chen SM, Rong MC. BCNO QDs and ROS synergistic oxidation effect on fluorescence enhancement sensing of tetracycline. Sensor Actuat B: Chem. 2021;332:129530.

  9. Perez-Rodriguez M, Pellerano RG, Pezza L, Pezza HR. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination. Talanta. 2018;182:1–21.

    Article  CAS  PubMed  Google Scholar 

  10. Aguilera-Luiz MM, Vidal JL, Romero-Gonzalez R, Frenich AG. Multi-residue determination of veterinary drugs in milk by ultra-high-pressure liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2008;1205(1–2):10–6.

    Article  CAS  PubMed  Google Scholar 

  11. Feng MX, Wang GN, Yang K, Liu HZ, Wang JP. Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods. Food Control. 2016;69:171–6.

    Article  CAS  Google Scholar 

  12. Ibarra IS, Rodriguez JA, Miranda JM, Vega M, Barrado E. Magnetic solid phase extraction based on phenyl silica adsorbent for the determination of tetracyclines in milk samples by capillary electrophoresis. J Chromatogr A. 2011;1218(16):2196–202.

    Article  CAS  PubMed  Google Scholar 

  13. Tang Y, Huang XH, Wang XL, Wang CX, Tao H, Wu YG. G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem. 2021;366:130560.

    Article  PubMed  Google Scholar 

  14. Diana S. Aga RGaPK. Application of ELISA in determining the fate of tetracyclines in land-applied livestock wastes. Analyst. 2003;128:658–62.

  15. Ahmed SR, Kumar S, Ortega GA, Srinivasan S, Rajabzadeh AR. Target specific aptamer-induced self-assembly of fluorescent graphene quantum dots on palladium nanoparticles for sensitive detection of tetracycline in raw milk. Food Chem. 2021;346:128893.

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Dong YY, Liang X. Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples. Biosens Bioelectron. 2018;109:1–7.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Wang JP, Deng JK, Wang S. A novel fluorescent “turn-on” aptasensor based on nitrogen-doped graphene quantum dots and hexagonal cobalt oxyhydroxide nanoflakes to detect tetracycline. Anal Bioanal Chem. 2020;412(6):1343–51.

    Article  CAS  PubMed  Google Scholar 

  18. Wang G, Zhang HC, Liu J, Wang JP. A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk. Anal Biochem. 2019;564–565:40–6.

    Article  PubMed  Google Scholar 

  19. Jin L, Qiao JT, Chen JH, Xu N, Wu MS. Combination of area controllable sensing surface and bipolar electrode-electrochemiluminescence approach for the detection of tetracycline. Talanta. 2020;208:120404.

    Article  CAS  PubMed  Google Scholar 

  20. Taghdisi SM, Danesh NM, Ramezani M, Abnous K. A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens Bioelectron. 2016;85:509–14.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Wang YL, Jia L, Bi N, Bie HY, Chen XZ, et al. Ultrasensitive and visual detection of tetracycline based on dual-recognition units constructed multicolor fluorescent nano-probe. J Hazard Mater. 2021;409:124935.

    Article  CAS  PubMed  Google Scholar 

  22. Jia P, Bu T, Sun XY, Liu YG, Liu JH, Wang QZ, et al. A sensitive and selective approach for detection of tetracyclines using fluorescent molybdenum disulfide nanoplates. Food Chem. 2019;297:124969.

    Article  CAS  PubMed  Google Scholar 

  23. Xiong J, Yang L, Gao LX, Zhu PP, Chen Q, Tan KJ. A highly fluorescent lanthanide metal-organic framework as dual-mode visual sensor for berberine hydrochloride and tetracycline. Anal Bioanal Chem. 2019;411(23):5963–73.

    Article  CAS  PubMed  Google Scholar 

  24. Khataee A, Jalili R, Dastborhan M, Karimi A, Ebadi Fard Azar A. Ratiometric visual detection of tetracycline residues in milk by framework-enhanced fluorescence of gold and copper nanoclusters. Spectrochim Acta A. 2020;242:118715.

  25. Fu Q, Long CC, Qin LF, Jiang ZX, Qing TP, Zhang P, et al. Fluorescent and colorimetric dual-mode detection of tetracycline in wastewater based on heteroatoms-doped reduced state carbon dots. Environ Pollut. 2021;283:117109.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao CX, Jiao Y, Gao Z, Yang YL, Li H. N, S co-doped carbon dots for temperature probe and the detection of tetracycline based on the inner filter effect. J Photoch Photobio A. 2018;367:137–44.

    Article  CAS  Google Scholar 

  27. Wu L, Long R, Li T, Tang C, Tong X, Guo Y, et al. One-pot fabrication of dual-emission and single-emission biomass carbon dots for Cu(2+) and tetracycline sensing and multicolor cellular imaging. Anal Bioanal Chem. 2020;412(27):7481–9.

    Article  CAS  PubMed  Google Scholar 

  28. Guo JH, Lu WJ, Zhang HL, Meng YT, Du FF, Shuang SM, et al. Copper doped carbon dots as the multi-functional fluorescent sensing platform for tetracyclines and pH. Sensor Actuat B: Chem. 2021;330:129360.

    Article  CAS  Google Scholar 

  29. Ma YS, Cen Y, Sohail M, Xu GH, Wei FD, Shi ML, et al. A ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl Mater Inter. 2017;9(38):33011–9.

    Article  CAS  Google Scholar 

  30. Zhang M, Wang WT, Zhang J, Zhou NL. Synthesis of lanthanum doped carbon dots for detection of mercury ion, multi-color imaging of cells and tissue, and bacteriostasis. Chem Eng J. 2017;330:1137–47.

    Article  CAS  Google Scholar 

  31. Xu Q, Su RG, Chen YS, Theruvakkattil Sreenivasan S, Li N, Zheng XS, et al. Metal charge transfer doped carbon dots with reversibly switchable, ultra-High quantum yield photoluminescence. ACS Applied Nano Mater. 2018;1(4):1886–93.

    Article  CAS  Google Scholar 

  32. Tejwan N, Saini AK, Sharma A, Singh TA, Kumar N, Das J. Metal-doped and hybrid carbon dots: a comprehensive review on their synthesis and biomedical applications. J Control Release. 2021;330:132–50.

    Article  CAS  PubMed  Google Scholar 

  33. Wang YH, Zhang C, Chen XC, Yang B, Yang L, Jiang CL, et al. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions. Nanoscale. 2016;8(11):5977–84.

    Article  CAS  PubMed  Google Scholar 

  34. Li XT, Fan KM, Yang RM, Du XX, Qu BH, Miao XM, et al. A long lifetime ratiometrically luminescent tetracycline nanoprobe based on Ir(III) complex-doped and Eu(3+)-functionalized silicon nanoparticles. J Hazard Mater. 2020;386:121929.

    Article  CAS  PubMed  Google Scholar 

  35. Ti MR, Li YS, Li ZQ, Zhao DX, Wu L, Yuan LF, et al. A ratiometric nanoprobe based on carboxylated graphitic carbon nitride nanosheets and Eu(3+) for the detection of tetracyclines. Analyst. 2021;146(3):1065–73.

    Article  CAS  PubMed  Google Scholar 

  36. Wu WJ, Zhao Q, Zhou R, Liang YC, Zhao WB, Shan CX. Ratiometric fluorescence sensor based on europium-grafted ZnO quantum dots for visual and colorimetric detection of tetracycline. Spectrochim Acta A. 2021;259:119901.

    Article  CAS  Google Scholar 

  37. Li MT, Zhu NW, Zhu W, Zhang SH, Li F, Wu PX, et al. Enhanced emission and higher stability ovalbumin-stabilized gold nanoclusters (OVA-AuNCs) modified by polyethyleneimine for the fluorescence detection of tetracyclines. Microchem J. 2021;169:106560.

    Article  CAS  Google Scholar 

  38. Li CL, Zeng CH, Chen Z, Jiang YF, Yao H, Yang YY, et al. Luminescent lanthanide metal-organic framework test strip for immediate detection of tetracycline antibiotics in water. J Hazard Mater. 2020;384:121498.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang HQ, Huang YH, Lin XH, Lu FF, Zhang ZS, Hu ZB. Lanthanum loaded graphitic carbon nitride nanosheets for highly sensitive and selective fluorescent detection of iron ions. Sensor Actuat B: Chem. 2018;255:2218–22.

    Article  CAS  Google Scholar 

  40. Yang SH, Sun XH, Wang ZY, Wang XY, Guo GS, Pu QS. Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion. Nano Res. 2018;11(3):1369–78.

    Article  CAS  Google Scholar 

  41. Lin BX, Zhang TY, Xin XL, Wu D, Huang Y, Liu YW, et al. Europium(III) modified silicone nanoparticles for ultrasensitive visual determination of tetracyclines by employing a fluorescence color switch. Microchim Acta. 2019;186(7):442.

    Article  Google Scholar 

  42. Xing XJ, Huang L, Zhao SJ, Xiao JF, Lan MH. S,N-Doped carbon dots for tetracyclines sensing with a fluorometric spectral response. Microchem J. 2020;157.

  43. Liu SG, Liu T, Li N, Geng S, Lei JL, Li NB, et al. Polyethylenimine-derived fluorescent nonconjugated polymer dots with reversible dual-signal pH response and logic gate operation. J of Phys Chem C. 2017;121(12):6874–83.

    Article  CAS  Google Scholar 

  44. Han L, Liu SG, Zhang XF, Tao BX, Li NB, Luo HQ. A sensitive polymer dots-manganese dioxide fluorescent nanosensor for “turn-on” detection of glutathione in human serum. Sensor Actuat B: Chem. 2018;258:25–31.

    Article  CAS  Google Scholar 

  45. Yang Y, Wei QY, Zou T, Kong YL, Su LF, Ma D, et al. Dual-emission ratiometric fluorescent detection of dinotefuran based on sulfur-doped carbon quantum dots and copper nanocluster hybrid. Sensor Actuat B: Chem. 2020;321:128534.

    Article  CAS  Google Scholar 

  46. Zhang X, Tan XY, Hu YP. Blue/yellow emissive carbon dots coupled with curcumin: a hybrid sensor toward fluorescence turn-on detection of fluoride ion. J Hazard Mater. 2021;411:125184.

    Article  CAS  PubMed  Google Scholar 

  47. Dong JX, Gao ZF, Zhang Y, Li BL, Zhang W, Lei JL, et al. The pH-switchable agglomeration and dispersion behavior of fluorescent Ag nanoclusters and its applications in urea and glucose biosensing. NPG Asia Mater. 2016;8(12):e335-e.

  48. Lin M, Zou HY, Yang T, Liu ZX, Liu H, Huang CZ. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers. Nanoscale. 2016;8(5):2999–3007.

    Article  CAS  PubMed  Google Scholar 

  49. Yan FY, Sun ZH, Pang JP, Jiang YX, Zheng WX. Functionalized carbon dots of thiazole derivatives based on inner filter effect for tetracyclines detection. Dyes Pigments. 2020;183:108673.

    Article  CAS  Google Scholar 

  50. Zhang Y, Lv M, Gao PF, Zhang GM, Shi LH, Yuan MJ, et al. The synthesis of high bright silver nanoclusters with aggregation-induced emission for detection of tetracycline. Sensor Actuat B: Chem. 2021;326:129009.

    Article  CAS  Google Scholar 

  51. Han L, Fan YZ, Qing M, Liu SG, Yang YZ, Li NB, et al. Smartphones and test paper-assisted ratiometric fluorescent sensors for semi-quantitative and visual assay of tetracycline based on the target-induced synergistic effect of antenna effect and inner filter effect. ACS Appl Mater Interfaces. 2020;12(41):47099–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hebei Province (Nos. B2019201397, B2015201193), the Project funded by China Postdoctoral Science Foundation (No. 2020M670678), the Foundation for Central Government Guidance for Local Science and Technology Development of Hebei Province (No. 216Z2605G), the Science and Technology Research Project of Hebei Higher Education (No. QN2016087), the Advanced Talents Incubation Program of Hebei University (No. 521000981136), Research Innovation Team of College of Chemistry and Environmental Science of Hebei University (No. hxkytd-py2101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi Gang Shen or Jiang Xue Dong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.70 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y.J., Su, M., Shi, YE. et al. A ratiometric fluorescent sensor for tetracyclines detection in meat based on pH-dependence of targets with lanthanum-doped carbon dots as probes. Anal Bioanal Chem 414, 2597–2606 (2022). https://doi.org/10.1007/s00216-022-03895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03895-x

Keywords

Navigation