Skip to main content
Log in

Ultrasensitive fluorescent detection of telomerase activity based on tetrahedral DNA nanostructures as carriers for DNA-templated silver nanoclusters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Precise evaluation of telomerase activity is essential for the clinical diagnosis of early tumors. Herein, we have ingeniously designed a tetrahedral DNA nanostructure, with hairpin-shaped DNA probes rich in cytosine bases at four vertices for telomerase detection. The DNA-templated silver nanoclusters can be formed after the addition of Ag. Then the introduction of telomerase adds the single-strand TTAGGG extension, which can “turn on” the fluorescence of silver nanoclusters quickly by the proximity of the resulting guanine-rich sequences to silver nanoclusters and realize accurate detection of telomerase activity. In this study, integration of high stability tetrahedral DNA nanostructure and fluorescence signal amplification of four DNA-templated silver nanoclusters offers the advantage of high sensitivity, with a low detection limit of 1 cell. More than that, this method is low-cost, facile, and feasible for practical clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6(8):611–22.

    Article  CAS  Google Scholar 

  2. Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev. 2002;66(3):407.

    Article  CAS  Google Scholar 

  3. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science (New York, NY). 1998;279(5349):349–52.

    Article  CAS  Google Scholar 

  4. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer (Oxford, England : 1990). 1997;33(5):787–91.

    Article  CAS  Google Scholar 

  5. Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010;31(1):9–18.

    Article  CAS  Google Scholar 

  6. Hiyama E, Hiyama K. Clinical utility of telomerase in cancer. Oncogene. 2002;21(4):643–9.

    Article  CAS  Google Scholar 

  7. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science (New York, NY). 1994;266(5193):2011–5.

    Article  CAS  Google Scholar 

  8. Jakupciak JP, Wang W, Barker PE, Srivastava S, Atha DH. Analytical validation of telomerase activity for cancer early detection - TRAP/PCR-CE and hTERT mRNA quantification assay for high-throughput screening of tumor cells. J Mol Diagn. 2004;6(3):157–65.

    Article  CAS  Google Scholar 

  9. Yin F, Liu L, Sun X, Hou L, Lu Y, Xue Q, et al. A facile deoxyuridine/biotin-modified molecular beacon for simultaneous detection of proteins and nucleic acids via a label-free and background-eliminated fluorescence assay. Analyst. 2019;144(18):5504–10.

    Article  CAS  Google Scholar 

  10. Yue XM, Qiao YQ, Gu DN, Wu ZX, Zhao WH, Li XY, et al. Reliable FRET-ON imaging of telomerase in living cells by a tetrahedral DNA nanoprobe integrated with structure-switchable molecular beacon. Sensors and Actuators B-Chemical. 2020;312:127943.

  11. Zhang X, Cheng R, Shi Z, Jin Y. A PCR-free fluorescence strategy for detecting telomerase activity via double amplification strategy. Biosens Bioelectron. 2016;75:101–7.

    Article  CAS  Google Scholar 

  12. Wang D, Guo R, Wei Y, Zhang Y, Zhao X, Xu Z. Sensitive multicolor visual detection of telomerase activity based on catalytic hairpin assembly and etching of Au nanorods. Biosens Bioelectron. 2018;122:247–53.

    Article  CAS  Google Scholar 

  13. Wang K, Li SG, Liu YJ, Jiang L, Zhang F, Wei YQ, et al. In situ detection and imaging of telomerase activity in cancer cell lines via disassembly of plasmonic core-satellites nanostructured probe. Anal Chem. 2017;89(13):7262–8.

    Article  CAS  Google Scholar 

  14. Shi ML, Zheng J, Liu CH, Tan GX, Qing ZH, Yang S, et al. SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification. Biosens Bioelectron. 2016;77:673–80.

    Article  CAS  Google Scholar 

  15. Zong S, Wang Z, Chen H, Cui Y. Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering. Small. 2013;9(24):4215–20.

    Article  CAS  Google Scholar 

  16. Zhang H-R, Wu M-S, Xu J-J, Chen H-Y. Signal-on dual-potential electrochemiluminescence based on luminol-gold bifunctional nanoparticles for telomerase detection. Anal Chem. 2014;86(8):3834–40.

    Article  CAS  Google Scholar 

  17. Liu X, Li W, Hou T, Dong S, Yu G, Li F. Homogeneous electrochemical strategy for human telomerase activity assay at single-cell level based on T7 exonuclease-aided target recycling amplification. Anal Chem. 2015;87(7):4030–6.

    Article  CAS  Google Scholar 

  18. Yi Z, Wang H-B, Chen K, Gao Q, Tang H, Yu R-Q, et al. A novel electrochemical biosensor for sensitive detection of telomerase activity based on structure-switching DNA. Biosens Bioelectron. 2014;53:310–5.

    Article  CAS  Google Scholar 

  19. Wang D, Zhang Y, Zhao X, Xu Z. Plasmonic colorimetric biosensor for visual detection of telomerase activity based on horseradish peroxidase-encapsulated liposomes and etching of Au nanobipyramids. Sensors Actuators B Chem. 2019;296:126646.

  20. Fu AC, Hu Y, Zhao Z-H, Su R, Song Y, Zhu D. Functionalized paper microzone plate for colorimetry and up-conversion fluorescence dual-mode detection of telomerase based on elongation and capturing amplification. Sensors Actuators B Chem. 2018;259:642–9.

    Article  CAS  Google Scholar 

  21. Ratajczak K, Krazinski BE, Kowalczyk AE, Dworakowska B, Jakiela S, Stobiecka M. Optical biosensing system for the detection of survivin mRNA in colorectal cancer cells using a graphene oxide carrier-bound oligonucleotide molecular beacon. Nanomaterials. 2018;8(7):510.

  22. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev. 2012;41(8):3210–44.

    Article  CAS  Google Scholar 

  23. Stobiecka M, Ratajczak K, Jakiela S. Toward early cancer detection: focus on biosensing systems and biosensors for an anti-apoptotic protein survivin and survivin mRNA. Biosens Bioelectron. 2019;137:58–71.

    Article  CAS  Google Scholar 

  24. Qing TP, Feng B, Zhang P, Zhang KW, He XX, Wang KM. Beyond native deoxyribonucleic acid, templating fluorescent nanomaterials for bioanalytical applications: a review. Anal Chim Acta. 2020;1105:11–27.

    Article  CAS  Google Scholar 

  25. Dong F, Feng E, Zheng T, Tian Y. In situ synthesized silver nanoclusters for tracking the role of telomerase activity in the differentiation of mesenchymal stem cells to neural stem cells. ACS Appl Mater Interfaces. 2018;10(2):2051–7.

    Article  CAS  Google Scholar 

  26. Xu Y, Zhang P, Wang Z, Lv S, Ding C. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe. Microchimica Acta. 2018;185(3):198.

  27. Li X, Wang W, Yang D, Wu J, Zhang B, Wu Z, et al. Telomerase activity detection in cancer cells via primer extension-mediated fluorescence enhancement of silver nanoclusters. Anal Methods. 2018;10(18):2138–43.

    Article  CAS  Google Scholar 

  28. Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, et al. DNA Nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. Anal Chem. 2011;83(19):7418–23.

    Article  CAS  Google Scholar 

  29. Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, et al. A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater. 2010;22(42):4754.

    Article  CAS  Google Scholar 

  30. Huang Q, Ma P-Q, Li H-D, Yin B-C, Ye B-C. Catalytic-hairpin-assembly-assisted DNA tetrahedron nanoprobe for intracellular microRNA imaging. ACS Appl Bio Mater. 2020;3(5):2861–6.

    Article  CAS  Google Scholar 

  31. Diez I, Ras RHA. Fluorescent silver nanoclusters. Nanoscale. 2011;3(5):1963–70.

    Article  CAS  Google Scholar 

  32. Zhang H, Liu X, Zhang C, Xu Y, Su J, Lu X, et al. A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test. Sensors Actuators B-Chem. 2020;321:128538.

  33. Liang L, Li J, Li Q, Huang Q, Shi J, Yan H, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angewandte Chemie-International Edition. 2014;53(30):7745–50.

    Article  CAS  Google Scholar 

  34. Ratajczak K, Krazinski BE, Kowalczyk AE, Dworakowska B, Jakiela S, Stobiecka M. Hairpin-hairpin molecular beacon interactions for detection of survivin mRNA in malignant SW480 cells. ACS Appl Mater Interfaces. 2018;10(20):17028–39.

    Article  CAS  Google Scholar 

  35. Fan D, Zhu J, Liu Y, Wang E, Dong S. Label-free and enzyme-free platform for the construction of advanced DNA logic devices based on the assembly of graphene oxide and DNA-templated AgNCs. Nanoscale. 2016;8(6):3834–40.

    Article  CAS  Google Scholar 

  36. Grin Y, Admoni T, Priel E. Telomerase activity in the various regions of mouse brain: non-radioactive telomerase repeat amplification protocol (TRAP) assay. Jove-J Visual Exp. 2014(91):e51865.

  37. Zhu J, Wang Y, Li B, Jin Y. Ultra-sensitive and chemiluminescent detection of telomerase activity via handheld luminometer. Sensors Actuators B-Chem. 2019;301:127109.

  38. Lin Y, Yang L, Yue G, Chen L, Qiu B, Guo L, et al. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)(3) (2+). Anal Bioanal Chem. 2016;408(25):7105–7111.

    Article  CAS  Google Scholar 

  39. Wang L, Meng T, Zhao D, Jia H, An S, Yang X, et al. An enzyme-free electrochemical biosensor based on well monodisperse Au nanorods for ultra-sensitive detection of telomerase activity. Biosensors Bioelectron. 2020;148.

  40. Shen Y, Gong J, Xu Q, Zhou L, Sheng J. Target induced framework nucleic acid nanomachine with doxorubicin-spherical nucleic acid tags for electrochemical determination of human telomerase activity. Microchim Acta. 2020;187(1):97.

  41. Dong P, Zhu L, Huang J, Ren J, Lei J. Electrocatalysis of cerium metal-organic frameworks for ratiometric electrochemical detection of telomerase activity. Biosensors Bioelectron. 2019;138:111313.

  42. Wang L, Meng T, Liang L, Sun J, Wu S, Wang H, et al. Fabrication of amine-functionalized metal-organic frameworks with embedded palladium nanoparticles for highly sensitive electrochemical detection of telomerase activity. Sensors and Actuators B-Chemical. 2019;278:133–139.

    Article  CAS  Google Scholar 

  43. Li J, Ma J, Zhang Y, Zhang Z, Hu K. Highly sensitive electrochemical analysis of telomerase activity based on magnetic bead separation and exonuclease III-aided target recycling amplification. Bioelectrochemistry. 2019;130.

  44. Ma Y, Mao G, Wu G, Fan J, He Z, Huang W. A novel nano-beacon based on DNA functionalized QDs for intracellular telomerase activity monitoring. Sensors Actuators B-Chem. 2020;304:127385.

  45. Zhang YD, Zhang Y, Ma C, Wang YY, Mu S, Liu XY, et al. Molecularly imprinted gelatin nanoparticles for DNA delivery and in-situ fluorescence imaging of telomerase activity. Microchim Acta. 2019;186(9):610.

  46. Zhou Y, Shen S, Lau C, Lu J. A conformational switch-based fluorescent biosensor for homogeneous detection of telomerase activity. Talanta. 2019;199:21–26.

    Article  CAS  Google Scholar 

  47. Wu T, Zhang Y, Hou T, Zhang Y, Wang S. A simple and sensitive fluorescence method for detection of telomerase activity using fusion protein bouquets. Anal Chim Acta. 2018;1038:120–5.

    Article  CAS  Google Scholar 

  48. Zhao H, Wang M, Xiong X, Liu Y, Chen X. Simultaneous fluorescent detection of multiplexed miRNA of liver cancer based on DNA tetrahedron nanotags. Talanta. 2020;210.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81703088), the Medical Research Project of Jiangsu Provincial Health and Family Planning Commission, China (Grant No. H2018113), and Medical Science and Technology Development Foundation, Nanjing Department of Health (YKK19110, YKK20173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Li.

Ethics declarations

Ethics approval

Informed consent was obtained before specimen collection, and the research was supported by the scientific ethical committee of the Second Hospital of Nanjing.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 405 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Xiang, L., Adeel, K. et al. Ultrasensitive fluorescent detection of telomerase activity based on tetrahedral DNA nanostructures as carriers for DNA-templated silver nanoclusters. Anal Bioanal Chem 414, 2431–2438 (2022). https://doi.org/10.1007/s00216-022-03883-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03883-1

Keywords

Navigation