Skip to main content

Advertisement

Log in

Metabolic composition and authenticity evaluation of bergamot essential oil assessed by nuclear magnetic resonance spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a sample of pure and certified bergamot essential oil (BEO) was extensively studied for the first time directly by NMR spectroscopy with the aim of investigating its metabolic composition, quantifying the main components of this complex natural matrix and simultaneously assessing whether the NMR technique is able to highlight possible frauds to which this high-cost product may be subjected. Eleven low molecular weight compounds have been identified by using 1D 1H and 13C-{1H} NMR experiments, 2D homo- and heteronuclear correlation NMR spectra, and 2D 1H DOSY experiments; the most abundant of them, i.e., about 90% of the sample analyzed, has been quantified by employing benzoic acid as an internal standard by 1H NMR spectrum. Moreover, since the commercial fraud of this precious oil is often due to the addition of less expensive oils, we have simulated a possible adulteration through the preparation of BEO samples to which different percentages of orange essential oil (OEO) were added. The results, obtained by combining the 1H NMR spectra collected on the adulterated samples and on pure BEO, with chemometric analysis, principal component analysis (PCA), indicate that it is possible to distinguish the sample of pure BEO from the adulterated ones and also, among them, to differentiate between the degrees of adulteration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Politiche agricole, 2020. https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/4708. 19/12/2021.

  2. Di Donna L, De Luca G, Mazzotti F, Napoli A, Salerno R, Taverna D, Sindona G. Statin-like principles of bergamot fruit (Citrus bergamia): isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J Nat Prod. 2009;72(7):1352–4.

    Article  PubMed  Google Scholar 

  3. Di Donna L, Iacopetta D, Cappello AR, Gallucci G, Martello E, Fiorillo M, Dolce V, Sindona G. Hypocholesterolaemic activity of 3-hydroxy-3-methyl-glutaryl flavanones enriched fraction from bergamot fruit (Citrus bergamia): “in vivo” studies. J Func Foods. 2014;7:558–68.

    Article  Google Scholar 

  4. Impellizzeri D, Bruschetta G, Di Paola R, Ahmad A, Campolo M, Cuzzocrea S, Esposito E, Navarra M. The anti-inflammatory and antioxidant effects of bergamot juice extract (BJe) in an experimental model of inflammatory bowel disease. Clin Nutr. 2015;34(6):1146–54.

    Article  CAS  PubMed  Google Scholar 

  5. Gabriele M, Frassinetti S, Caltavuturo L, Montero L, Dinelli G, LongoV, Di Gioia D, Pucci L. Citrus bergamia powder: antioxidant, antimicrobial and anti-inflammatory properties. J Funct Foods. 2017;31:255–265.

  6. Da Pozzo E, De Leo M, Faraone I, Milella L, Cavallini C, Piragine E, Testai L, Calderone V, Pistelli L, Braca A, Martini C. Antioxidant and antisenescence effects of bergamot juice. Oxid Med Cell Longev. 2018;2018:1–14.

    Article  Google Scholar 

  7. Ballistrieri G, Amenta M, Fabroni S, Consoli V, Grosso S, Venella L, Sorrenti V, Rapisarda P. Evaluation of lipid and cholesterol-lowering effect of bioflavonoids from bergamot extract. Nat Prod Res. 2020:1–6.

  8. Pernice R, Borriello G, Ferracane R, Borrelli RC, Cennamo F, Ritieni A. Bergamot: a source of natural antioxidants for functionalized fruit juices. Food Chem. 2009;112(3):545–50.

    Article  CAS  Google Scholar 

  9. Russo M, Arigò A, Calabrò ML, Farnetti S, Mondello L, Dugo P. Bergamot (Citrus bergamia, Risso) as a source of nutraceuticals: limonoids and flavonoids. J Funct Foods. 2016;20:10–9.

    Article  CAS  Google Scholar 

  10. Poli A, Barbagallo CM, Cicero AFC, Corsini A, Manzato E, Trimarco B, Bernini F, Visioli F, Bianchi A, Canzone G, Crescini C, Kreutzenberg S, Ferrara N, Gambacciani M, Ghiselli A, Lubrano C, Marelli G, Marrocco W, Montemurro V, Parretti D, Pedretti R, Perticone F, Stella R, Marangonia F. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An Intersociety Position Paper Pharmacol Res. 2018;134:51–60.

    CAS  PubMed  Google Scholar 

  11. Manzoor A, Dar IH, Bhat SA, Ahmad S. Flavonoids: health benefits and their potential use in food systems. In Functional Food Products and Sustainable Health, edition no. 1; Saghir Ahmad and Nasser Abdulatif Al-Shabib Eds, Springer: Singapore, 2020:235–256.

  12. Baron G, AltomareA, Mol M, Leite Garcia J, Correa C, Raucci A, Mancinelli L, Mazzotta S, Fumagalli L, Trunfio G, Tucci L, Lombardo E, Malara D, Janda E, Mollace V, Carini M, Bombardelli E, Aldini G. Analytical profile and antioxidant and anti-inflammatory activities of the enriched polyphenol fractions isolated from bergamot fruit and leave. Antioxidants. 2021;10(141):1–26.

  13. Dugo G, Trozzi G. The Composition of Bergamot Juice. In Citrus bergamia bergamot and its derivatives. edition no.1. Dugo G, and Bonaccorsi I. Eds. CRC Press: Boca Raton, Florida. 2013:385–404.

  14. Valussi M, Donelli D, Firenzuoli F, Antonelli M. Bergamot oil: botany, production, pharmacology. Encyclopedia. 2021;1(1):152–76.

    Article  Google Scholar 

  15. Dreger M, Wielgus K. Application of essential oils as natural cosmetic preservatives. Herba Pol. 2013;59(4):142–56.

    Article  CAS  Google Scholar 

  16. Bijaoui N. Bergamot and its use in perfumery. In Citrus bergamia bergamot and its derivatives. edition no.1. Dugo G. and Bonaccorsi I. Eds. CRC Press: Boca Raton, Florida. 2013: 467–473.

  17. Navarra M, Mannucci CM, Delbò M, Calapai G. Citrus bergamia essential oil: from basic research to clinical application. Front Pharmacol. 2015;6(36):1–7.

    CAS  Google Scholar 

  18. Crispo F. Bergamot in the Calabrian economy and the role of Consorzio del Bergamotto. In Citrus bergamia bergamot and its derivatives. edition no.1. Dugo G. and Bonaccorsi. I. Eds. CRC Press: Boca Raton, Florida. 2013: 47–58.

  19. Pizzimenti F, Nostro A, Marino A. Antimicrobial activity of Citrus bergamia Risso & Poiteau. In Citrus bergamia bergamot and its derivatives. edition no.1. Dugo G. and Bonaccorsi. I. Eds. CRC Press: Boca Raton, Florida. 2013:491–498.

  20. Radford T. Bergamot in food and beverages. In Citrus bergamia bergamot and its derivatives. edition no.1. Dugo G. and Bonaccorsi. I. Eds. CRC Press: Boca Raton, Florida. 2013:475–490.

  21. Shaaban M, Nasr M, Tawfik AA, Fadel M, Sammour O. Novel bergamot oil nanospanlastics combined with PUVB therapy as a clinically translatable approach for vitiligo treatment. Drug Deliv Transl Res. 2019;9:1106–16.

    Article  PubMed  Google Scholar 

  22. Lombardo GE, Cirmi S, Musumeci L, Pergolizzi S, Maugeri A, Russo C, Mannucci C, Calapai G, Navarra M. Mechanisms underlying the anti-inflammatory activity of bergamot essential oil and its antinociceptive effects. Plants. 2020;9(704):1–16.

    Google Scholar 

  23. Cirmi S, Bisignano C, Mandalari G, Navarra M. Anti-infective potential of Citrus bergamia Risso et Poiteau (Bergamot) derivatives: a systematic review. Phytother Res. 2016;30(9):1404–11.

    Article  CAS  PubMed  Google Scholar 

  24. Rombolà L, Tridico L, Scuteri D, Sakurada T, Sakurada S, Mizoguchi H, Avato P, Corasaniti MT, Bagetta G, Morrone LA. Bergamot essential oil attenuates anxiety-like behaviour in rats. Molecules. 2017;22(614):1–11.

    Google Scholar 

  25. Dosoky NS, Setzer WN. Biological activities and safety of Citrus spp. essential oils. Int J Mol Sci. 2018;19(1966):1–25.

  26. Maugeri A, Lombardo GE, Musumeci L, Russo C, Gangemi S, Calapai G, Cirmi S, Navarra M. Bergamottin and 5-geranyloxy-7-methoxycumain cooperate in the cytotoxic effect of Citrus bergamia (bergamot) essential oil in human neuroblastoma SH-SY5Y cell line. Toxins. 2021;13(275):1–15.

    Google Scholar 

  27. Arena ME, Alberto MR, Cartagena E. Potential use of citrus essential oils against acute respiratory syndrome caused by coronavirus. J Essent Oil Res. 2021;33(4):330–41.

    Article  CAS  Google Scholar 

  28. Russo R, Ciociaro A, Berliocchi L, Cassiano MGV, Rombolà L, Ragusa S, Bagetta G, Blandini F, Corasaniti MT. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells. Fitoterapia. 2013;89:48–57.

    Article  CAS  PubMed  Google Scholar 

  29. Avila-Sosa R, Navarro-Cruz AR, Sosa-Morales ME, Lopez-Malo A, Palou E. Bergamot (Citrus bergamia) oils. In Essential oils in food preservation, flavor and safety. edition no.1. Preedy, V.R. Ed, Academic Press: Cambridge, Massachusetts, USA. 2016: 247–252.

  30. Gioffrè G, Ursino D, Labate MLC, Giuffré AM. The peel essential oil composition of bergamot fruit (Citrus bergamia, Risso) of Reggio Calabria (Italy): a review. Emir J Food Agric. 2020;32(11):835–45.

    Article  Google Scholar 

  31. Giuffrè AM, Nobile R. Citrus bergamia, Risso: the peel, the juice and the seed oil of the bergamot fruit of Reggio Calabria (South Italy). Emir J Food Agric. 2020;32(7):522–32.

    Google Scholar 

  32. Russo M, Di Sanzo R. Bergamot peel and leaf extracts by supercritical fluids technology and composition. In Citrus bergamia: bergamot and its derivatives, ed. G. Dugo and I. Bonaccorsi. CRC Press. 2013: 237–274.

  33. Marzocchi S, Baldi E, Crucitti MC, Toselli M, Caboni MF. Effect of harvesting time on volatile compounds composition of bergamot (Citrus × bergamia) essential oil. Flavour Fragr J. 2019;34:426–35.

    Article  CAS  Google Scholar 

  34. Statti GA, Conforti F, Sacchetti G, Muzzoli M, Agrimonti C, Menichini F. Chemical and biological diversity of Bergamot (Citrus bergamia) in relation to environmental factors. Fitoterapia. 2004;75:212–6.

    Article  CAS  PubMed  Google Scholar 

  35. Lazarotto M, Valério A, Boligon A, Tres MV, Scapinello J, Dal Magro J, Oliveira JV. Chemical composition and antibacterial activity of bergamot peel oil from supercritical CO2 and compressed propane extraction. J Food Sci. 2018;10:16–23.

    CAS  Google Scholar 

  36. Bonaccorsi I, Schipilliti L, Dugo G. Adulteration of bergamot oil. In Citrus bergamia bergamot and its derivatives. edition no.1. Dugo G. and Bonaccorsi I. Eds. CRC Press: Boca Raton, Florida. 2013: 349–384.

  37. Salvino RA, Colella MF, De Luca G. NMR-based metabolomics analysis of Calabrian citrus fruit juices and its application to industrial process quality control. Food Control. 2021;121:107619.

  38. NMR-based metabolomics, edition no. 1. Keun, H. C. Ed, RSC Publishing: London, UK, 2018.

  39. Sobolev AP, Thomas F, Donarsku J, Ingallina C, Circi S, Marincola FC, Capitani D, Mannina L. Use of NMR applications to tackle future food fraud issues. Trends Food Sci Technol. 2019;91:347–53.

    Article  CAS  Google Scholar 

  40. Solovyev PA, Fauhl-Hassek C, Riedl J, Esslinger S, Bontempo L, Camin F. NMR spectroscopy in wine authentication: an official control perspective. Compr Rev Food Sci Food Saf. 2021;20(2):2040–62.

    Article  CAS  PubMed  Google Scholar 

  41. Pacholczyk-Sienicka B, Ciepielowski G, Albrecht L. The application of NMR spectroscopy and chemometrics in authentication of spices. Molecules. 2021;20(2):1–28.

    Google Scholar 

  42. Ebrahimi P, Viereck N, Bro R, Engelsen Soren. B. Chemometric analysis of NMR spectra. In: Webb G. (eds), Modern magnetic resonance. Springer International Publishing: Cham. 2017:1–20.

  43. Ren S, Hinzman AA, Kang EL, Szczesniak R, Lu LJ. Computational and statistical analysis of metabolomics data. Metabolomics. 2015;11:1492–513.

    Article  CAS  Google Scholar 

  44. Skakovskii ED, Lamotkin SA, Shpak SI, Tychinskaya LY, Gaidukevich OA, Lamotkin AI. Application of NMR spectroscopy for analysis of the composition of pine needle essential oil. J Appl Spectrosc. 2006;73:275–9.

    Article  CAS  Google Scholar 

  45. Skakovskii ED, Kiselev WP, Tychinskaya LY, Schutova AG, Gonsharova LW, Spiridowish EW, Bovdey NA, Kiselev PA, Gaidukevich OA. Characterization of essential oil of Agastache Rugosa by NMR spectroscopy. J Appl Spectrosc. 2010;77:329–34.

    Article  CAS  Google Scholar 

  46. Cerceau CI, Barbosa LCA, Filomeno CA, Alvarenga ES, Demuner AJ, Fidencio PH. An optimized and validated 1H NMR method for the quantification of α-pinene in essential oils. Talanta. 2016;150:97–103.

    Article  CAS  PubMed  Google Scholar 

  47. Freitas JVB, Alves Filho EG, Silva LMA, Zocolo GJ, de Brito ES, Gramosa NV. Chemometric analysis of NMR and GC dataset for chemotype characterization of essential oils from different species of Ocimunìm. Talanta. 2018;180:329–36.

    Article  CAS  PubMed  Google Scholar 

  48. Formisano C, Rigano D, Lopatriello A, Sirignano C, Ramaschi G, Arnoldi L, Riva A, Sardone N, Taglialetela-Scafati O. Detailed phytochemical characterization of bergamot polyphenolic fraction (BPF) by UPLC-DAD-MS and LC-NMR. J Agric Food Chem. 2019;67(11):3159–67.

    Article  CAS  PubMed  Google Scholar 

  49. Wishart DS, Tzur D, Knox C, et al., HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007 Jan;35(Database issue):D521–6. 17202168 (https://hmdb.ca/) 30/09/2021.

  50. Wishart DS, Knox C, Guo AC, et al., HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009 37(Database issue):D603–610. 18953024 (https://hmdb.ca/) 30/09/2021.

  51. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, et al., HMDB 3.0 — The Human Metabolome Database in 2013. Nucleic Acids Res. 2013. Jan 1;41(D1):D801–7. 23161693 (https://hmdb.ca/) 30/09/2021.

  52. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, et al., HMDB 4.0 — The Human Metabolome Database for 2018. Nucleic Acids Res. 2018. Jan 4;46(D1):D608–17. 29140435(https://hmdb.ca/) 30/09/2021.

  53. Kolehmainen E, Laihia K, Laatikainen R, Vepsalainen J, Niemitz M, Suontamo R. Complete spectral analysis of the 1H NMR 16-spin system of β-pinene. Magn Reason Chem. 1997;35:463–7.

    Article  CAS  Google Scholar 

  54. Skold M, Borje A, Matura M, Karlberg AT. Studies on the autoxidation and sensitizing capacity of the fragrance chemical linalool, identifying a linalool hydroperoxide. Contact Derm. 2002;46(5):267–72.

    Article  Google Scholar 

  55. Chunyan C, Bo S, Ping L, Jingmei L, Ito Y. Isolation and purification of psoralen and bergapten from Ficus Carica L. leaves by high-speed countercurrent chromatography. J Liq Chrom Relat Tech. 2009;32:136–143.

  56. Liu Y, Ren C, Cao Y, Wang Y, Duan W, Xie L, Sun C, Li X. Characterization and purification of bergamottin from citrus Grandis (L.) Osbeck cv. Yongjiazaoxiangyou and its antiproliferative activity and effect on glucose consumption in HepG2 cells. Molecules. 2017;22(1227):1–13.

  57. Kumar Bharti S, Roy R. Quantitative 1H NMR spectroscopy. Trends Analyt Chem. 2012;35:5–26.

    Article  Google Scholar 

  58. Sobolev AP, Segre A, Lamanna R. Proton high-field NMR study of tomato juice. Magn Reason Chem. 2003;41:237–45.

    Article  CAS  Google Scholar 

  59. TopSpin. 2018. https://www.bruker.com/en/products-and-solutions/mr/nmr-software/topspin.html. 30/09/2021.

  60. Dynamic Center. https://www.bruker.com/en/products-and-solutions/mr/nmr-software/dynamics-center.html 05/10/2021.

  61. R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 30/09/2021.

  62. Borgognone MG, Bussi J, Hough G. Principal component analysis in sensory analysis: covariance or correlation matrix? Food Qual Prefer. 2001;12:323–6.

    Article  Google Scholar 

  63. Chen S, Wang Y, Yang Y, Xiang T, Liu J, Zhou H, Wu X. Psoralen inhibited apoptosis of osteoporotic osteoblasts by modulating IRE1-ASK1-JNK pathway. Indawi Biomed Res Int. 2017;2017:1–9.

    Google Scholar 

  64. Witaicenis A, Seito LN, da Silveira CA, de Almeida Junior LD, Luchini AC, Rodrigues-Orsi P, Cestari SH, Di Stasi LC. Antioxidant and intestinal anti-inflammatory effects of plant-derive coumarin derivatives. Phytomedicine. 2014;21(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  65. Toshihiro O, Tadashi K, Shinichi Y. Chemical aspects of coumarin compounds for the prevention of hepatocellular carcinomas. Curr Med Chem Anticancer Agents. 2005;5(1):47–51.

    Article  Google Scholar 

  66. Kejlová K, Jírová D, Bendová H, Kandárová H, Weidenhoffer Z, Kolárová H, Liebsch M. Phototoxicity of bergamot oil assessed by in vitro techniques in combination with human parch tests. Toxicol In Vitro. 2007;21(7):1298–303.

    Article  PubMed  Google Scholar 

  67. Dugo G, Bonaccorsi I, Sciarrone D, Schipilliti L, Russo M, Controneo A, Dugo P, Mondello L, Raymo V. Characterization of cold-pressed and processed bergamot oils by using GC-FID, GC-MS, GC-C-IRMS, enantio-GC, MDGC, HPLC and HPLC-MS-IT-TOF. J Essent Oil Res. 2012;24(2):93–117.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the University of Calabria and POR Calabria – FSE/FESR 2014—2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina De Luca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 224 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvino, R.A., Aroulanda, C., De Filpo, G. et al. Metabolic composition and authenticity evaluation of bergamot essential oil assessed by nuclear magnetic resonance spectroscopy. Anal Bioanal Chem 414, 2297–2313 (2022). https://doi.org/10.1007/s00216-021-03869-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03869-5

Keywords